GapMind for catabolism of small carbon sources

 

Alignments for a candidate for rbsK in Lactobacillus pobuzihii E100301

Align Ribokinase; RK; EC 2.7.1.15 (characterized)
to candidate WP_017867456.1 LACPOB_RS0103570 ribokinase

Query= SwissProt::A0A0H2WZY4
         (304 letters)



>NCBI__GCF_000349725.1:WP_017867456.1
          Length = 303

 Score =  273 bits (697), Expect = 5e-78
 Identities = 146/300 (48%), Positives = 201/300 (67%), Gaps = 2/300 (0%)

Query: 3   NKVVILGSTNVDQFLTVERYAQPGETLHVEEAQKAFGGGKGANQAIATARMQADTTFITK 62
           NKV ++GS N+D  L V+R  +PGET+H +E   A GGGKGANQA+A +R  ADTTFI  
Sbjct: 2   NKVTVVGSINLDTNLRVKRMVKPGETIHAKEHYSA-GGGKGANQAVAASRAGADTTFIGA 60

Query: 63  IGTDGVADFILEDFKVAHIDTSYIIKTAEAKTGQAFITVNAEGQNTIYVYGGANMTMTPE 122
           +G D     +++  K   ID S I   A   TGQAFITV+ EG+N+I +Y GAN    P+
Sbjct: 61  VGNDAPGKQMMDLLKEEGIDLSGIDTIANESTGQAFITVDDEGENSITIYAGANFAFGPK 120

Query: 123 DVINAKDAIINADFVVAQLEVPIPAIISAFEIAKAHGVTTVLNPAPAK-ALPNELLSLID 181
           ++   +  + ++DFV+AQ E PI A I AFEIA  + V T+LNPAP + ++  +LL + D
Sbjct: 121 EIDQKESLLKDSDFVIAQFETPIDATIRAFEIAHKNEVKTILNPAPGEDSISADLLKVTD 180

Query: 182 IIVPNETEAELLSGIKVTNEQSMKDNANYFLSIGIKTVLITLGKQGTYFATKNQSQHIEA 241
           +I PNETEAE ++G+ V +E S K  A     +G++ V+IT+G +G ++     S+ + A
Sbjct: 181 MITPNETEAETITGVHVEDEVSAKKAAAKLHDLGVEVVIITIGSKGAFYDFNGTSELVPA 240

Query: 242 YKVNAIDTTAAGDTFIGAFVSRLNKSQDNLADAIDFGNKASSLTVQKHGAQASIPLLEEV 301
           +KV+A+DTTAAGDTFIGA  S L  +  NL DAI FGNKASSLTVQ++GAQ SIP  +E+
Sbjct: 241 FKVHAVDTTAAGDTFIGAMSSVLKANFSNLKDAILFGNKASSLTVQRYGAQPSIPYQKEI 300


Lambda     K      H
   0.314    0.130    0.352 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 302
Number of extensions: 12
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 304
Length of database: 303
Length adjustment: 27
Effective length of query: 277
Effective length of database: 276
Effective search space:    76452
Effective search space used:    76452
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 48 (23.1 bits)

Align candidate WP_017867456.1 LACPOB_RS0103570 (ribokinase)
to HMM TIGR02152 (rbsK: ribokinase (EC 2.7.1.15))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR02152.hmm
# target sequence database:        /tmp/gapView.3761981.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR02152  [M=298]
Accession:   TIGR02152
Description: D_ribokin_bact: ribokinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                             Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                             -----------
   3.9e-118  380.1   7.6   4.4e-118  379.9   7.6    1.0  1  NCBI__GCF_000349725.1:WP_017867456.1  


Domain annotation for each sequence (and alignments):
>> NCBI__GCF_000349725.1:WP_017867456.1  
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  379.9   7.6  4.4e-118  4.4e-118       1     297 [.       4     301 ..       4     302 .. 1.00

  Alignments for each domain:
  == domain 1  score: 379.9 bits;  conditional E-value: 4.4e-118
                             TIGR02152   1 ivvvGSinvDlvlrvkrlpkpGetvkaeefkiaaGGKGANQAvaaarlgaevsmigkvGkDefgeellenlkk 73 
                                           ++vvGSin+D+ lrvkr+ kpGet++a+e++ a GGKGANQAvaa+r ga++++ig+vG+D+ g+++++ lk+
  NCBI__GCF_000349725.1:WP_017867456.1   4 VTVVGSINLDTNLRVKRMVKPGETIHAKEHYSAGGGKGANQAVAASRAGADTTFIGAVGNDAPGKQMMDLLKE 76 
                                           79*********************************************************************** PP

                             TIGR02152  74 egidteyvkkvkktstGvAlilvdeegeNsIvvvaGaneeltpedvkaaeekikesdlvllQlEipletveea 146
                                           egid + + +++++stG+A+i+vd+egeNsI ++aGan  + p++++++e+ +k+sd+v++Q+E+p++++++a
  NCBI__GCF_000349725.1:WP_017867456.1  77 EGIDLSGIDTIANESTGQAFITVDDEGENSITIYAGANFAFGPKEIDQKESLLKDSDFVIAQFETPIDATIRA 149
                                           ************************************************************************* PP

                             TIGR02152 147 lkiakkagvkvllnPAPaekkldeellslvdiivpNetEaeiLtgievedledaekaaekllekgvkaviitl 219
                                           ++ia+k++vk++lnPAP e++++++ll+++d+i+pNetEae++tg++ved+ +a+kaa+kl++ gv+ viit+
  NCBI__GCF_000349725.1:WP_017867456.1 150 FEIAHKNEVKTILNPAPGEDSISADLLKVTDMITPNETEAETITGVHVEDEVSAKKAAAKLHDLGVEVVIITI 222
                                           ************************************************************************* PP

                             TIGR02152 220 GskGallvskdekklipalkvkavDttaAGDtFigalavaLaeg.ksledavrfanaaaalsVtrkGaqssiP 291
                                           GskGa++  +++++l+pa+kv+avDttaAGDtFiga++++L+++ ++l+da+ f+n+a++l+V+r Gaq+siP
  NCBI__GCF_000349725.1:WP_017867456.1 223 GSKGAFYDFNGTSELVPAFKVHAVDTTAAGDTFIGAMSSVLKANfSNLKDAILFGNKASSLTVQRYGAQPSIP 295
                                           ********************************************9**************************** PP

                             TIGR02152 292 tkeeve 297
                                           +++e+e
  NCBI__GCF_000349725.1:WP_017867456.1 296 YQKEIE 301
                                           ****97 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (298 nodes)
Target sequences:                          1  (303 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.00u 0.00s 00:00:00.00 Elapsed: 00:00:00.00
# Mc/sec: 21.46
//
[ok]

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory