GapMind for catabolism of small carbon sources

 

Alignments for a candidate for rbsK in Lactobacillus shenzhenensis LY-73

Align Ribokinase; RK; EC 2.7.1.15 (characterized)
to candidate WP_022530156.1 L248_RS10315 ribokinase

Query= SwissProt::A0A0H2WZY4
         (304 letters)



>NCBI__GCF_000469325.1:WP_022530156.1
          Length = 309

 Score =  253 bits (645), Expect = 5e-72
 Identities = 139/297 (46%), Positives = 190/297 (63%), Gaps = 2/297 (0%)

Query: 1   MTNKVVILGSTNVDQFLTVERYAQPGETLHVEEAQKAFGGGKGANQAIATARMQADTTFI 60
           MTN VVI+GS N+D  L V R  QPGET+ +    +A  GGKGANQA+A+AR  A TTF+
Sbjct: 1   MTNHVVIIGSINIDNTLHVARLPQPGETIAMTGFSQA-PGGKGANQAVASARSGAATTFV 59

Query: 61  TKIGTDGVADFILEDFKVAHIDTSYIIKTAEAKTGQAFITVNAEGQNTIYVYGGANMTMT 120
            ++G D     ++E  K   ID  +++ +    TGQA+I +   GQN+I +  GAN  + 
Sbjct: 60  GRVGDDNNGWLMIEKLKKEGIDVRHVVTSHTLPTGQAYILLQESGQNSIIIDHGANYQVM 119

Query: 121 PEDVINAKDAIINADFVVAQLEVPIPAIISAFEIAKAHGVTTVLNPAPA-KALPNELLSL 179
           PEDV  A + I  A FV+ + E PIPA  +AF+ AK  GV T+LNPAPA + L  ELL+ 
Sbjct: 120 PEDVAAAAEPIKAASFVITECETPIPAAAAAFQQAKQAGVRTILNPAPANQRLTPELLTH 179

Query: 180 IDIIVPNETEAELLSGIKVTNEQSMKDNANYFLSIGIKTVLITLGKQGTYFATKNQSQHI 239
            DIIVPNETE+  L+G+ +T+  S++ NA YF   G+  V+ITLG++G Y AT +++Q +
Sbjct: 180 TDIIVPNETESGALTGVPITDAASLQANAAYFRDRGVGIVIITLGEKGAYVATPDRAQLM 239

Query: 240 EAYKVNAIDTTAAGDTFIGAFVSRLNKSQDNLADAIDFGNKASSLTVQKHGAQASIP 296
            A+ V A+DTT AGD FIGA  S L  +  NL  A+ +  +ASSL VQ  GA  S+P
Sbjct: 240 PAFSVQAVDTTGAGDAFIGALASELQPNLSNLTSAVQYAQRASSLAVQGLGAIPSLP 296


Lambda     K      H
   0.314    0.130    0.352 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 229
Number of extensions: 11
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 304
Length of database: 309
Length adjustment: 27
Effective length of query: 277
Effective length of database: 282
Effective search space:    78114
Effective search space used:    78114
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 48 (23.1 bits)

Align candidate WP_022530156.1 L248_RS10315 (ribokinase)
to HMM TIGR02152 (rbsK: ribokinase (EC 2.7.1.15))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR02152.hmm
# target sequence database:        /tmp/gapView.3200601.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR02152  [M=298]
Accession:   TIGR02152
Description: D_ribokin_bact: ribokinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                             Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                             -----------
   2.2e-108  348.0   4.4   2.5e-108  347.9   4.4    1.0  1  NCBI__GCF_000469325.1:WP_022530156.1  


Domain annotation for each sequence (and alignments):
>> NCBI__GCF_000469325.1:WP_022530156.1  
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  347.9   4.4  2.5e-108  2.5e-108       1     296 [.       5     301 ..       5     303 .. 0.99

  Alignments for each domain:
  == domain 1  score: 347.9 bits;  conditional E-value: 2.5e-108
                             TIGR02152   1 ivvvGSinvDlvlrvkrlpkpGetvkaeefkiaaGGKGANQAvaaarlgaevsmigkvGkDefgeellenlkk 73 
                                           +v++GSin+D +l+v rlp+pGet++ + f++a+GGKGANQAva ar ga+++++g+vG+D+ g  ++e+lkk
  NCBI__GCF_000469325.1:WP_022530156.1   5 VVIIGSINIDNTLHVARLPQPGETIAMTGFSQAPGGKGANQAVASARSGAATTFVGRVGDDNNGWLMIEKLKK 77 
                                           79*********************************************************************** PP

                             TIGR02152  74 egidteyvkkvkktstGvAlilvdeegeNsIvvvaGaneeltpedvkaaeekikesdlvllQlEipletveea 146
                                           egid+ +v ++++ +tG+A+il++e+g+NsI++ +Gan ++ pedv+aa+e ik++++v+   E+p+ ++ +a
  NCBI__GCF_000469325.1:WP_022530156.1  78 EGIDVRHVVTSHTLPTGQAYILLQESGQNSIIIDHGANYQVMPEDVAAAAEPIKAASFVITECETPIPAAAAA 150
                                           ************************************************************************* PP

                             TIGR02152 147 lkiakkagvkvllnPAPaekkldeellslvdiivpNetEaeiLtgievedledaekaaekllekgvkaviitl 219
                                           ++ ak+agv ++lnPAPa+++l  ell+++diivpNetE  +Ltg+ ++d+++++++a++++++gv  viitl
  NCBI__GCF_000469325.1:WP_022530156.1 151 FQQAKQAGVRTILNPAPANQRLTPELLTHTDIIVPNETESGALTGVPITDAASLQANAAYFRDRGVGIVIITL 223
                                           ************************************************************************* PP

                             TIGR02152 220 GskGallvskdekklipalkvkavDttaAGDtFigalavaLaeg.ksledavrfanaaaalsVtrkGaqssiP 291
                                           G+kGa++++ d+ +l+pa+ v+avDtt+AGD+Figala+ L+ + ++l++av++a++a++l+V+ +Ga +s+P
  NCBI__GCF_000469325.1:WP_022530156.1 224 GEKGAYVATPDRAQLMPAFSVQAVDTTGAGDAFIGALASELQPNlSNLTSAVQYAQRASSLAVQGLGAIPSLP 296
                                           *******************************************999*************************** PP

                             TIGR02152 292 tkeev 296
                                            ++ v
  NCBI__GCF_000469325.1:WP_022530156.1 297 HRQAV 301
                                           *9987 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (298 nodes)
Target sequences:                          1  (309 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.00u 0.00s 00:00:00.00 Elapsed: 00:00:00.00
# Mc/sec: 15.70
//
[ok]

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory