Align L-lactate permease (characterized)
to candidate WP_024891079.1 Z164_RS0112770 L-lactate permease
Query= SwissProt::P33231 (551 letters) >NCBI__GCF_000559025.1:WP_024891079.1 Length = 558 Score = 842 bits (2176), Expect = 0.0 Identities = 412/558 (73%), Positives = 481/558 (86%), Gaps = 7/558 (1%) Query: 1 MNLWQQNYDPAGNIWLSSLIASLPILFFFFALIKLKLKGYVAASWTVAIALAVALLFYKM 60 M W Q YDPAGN+W+SS +A++PI FFFFAL+ +LKG++A + TV +ALAVALLFY+M Sbjct: 1 MQPWPQFYDPAGNLWISSAVAAIPIAFFFFALVVARLKGWLAGTLTVLLALAVALLFYRM 60 Query: 61 PVANALASVVYGFFYGLWPIAWIIIAAVFVYKISVKTGQFDIIRSSILSITPDQRLQMLI 120 P ALAS YGF YGLWPIAWIII AVF+YK+SV+TGQFDIIR+SILS+T DQRLQML+ Sbjct: 61 PADRALASAAYGFVYGLWPIAWIIIGAVFLYKVSVRTGQFDIIRASILSVTEDQRLQMLL 120 Query: 121 VGFCFGAFLEGAAGFGAPVAITAALLVGLGFKPLYAAGLCLIVNTAPVAFGAMGIPILVA 180 VGF FGAFLEGAAGFGAPVAITAALLVGLGFKPLYAAGLCLI NTAPVAFGAMGIPI+VA Sbjct: 121 VGFAFGAFLEGAAGFGAPVAITAALLVGLGFKPLYAAGLCLIANTAPVAFGAMGIPIIVA 180 Query: 181 GQVTGIDSFEIGQMVGRQLPFMTIIVLFWIMAIMDGWRGIKETWPAVVVAGGSFAIAQYL 240 GQVTG+D+FEIGQM GRQLPF+TIIVLFWIMAIMDGWRGI+ETWPAV+V GGSFAI Q+L Sbjct: 181 GQVTGLDAFEIGQMAGRQLPFLTIIVLFWIMAIMDGWRGIRETWPAVLVGGGSFAIVQFL 240 Query: 241 SSNFIGPELPDIISSLVSLLCLTLFLKRWQPVRVFRF----GDL---GASQVDMTLAHTG 293 +SN+IGPELPDI S++ SL+CLTLFL+ WQP R+FRF D GA+ V Sbjct: 241 TSNYIGPELPDITSAIASLVCLTLFLRVWQPRRIFRFEPDAADAPAGGAAPVRAPAPPAR 300 Query: 294 YTAGQVLRAWTPFLFLTATVTLWSIPPFKALFASGGALYEWVINIPVPYLDKLVARMPPV 353 ++ G +++AW+PF+ LTA V++WS+ PFKALFA GGAL +WV+ +PVP+L +LV + PP+ Sbjct: 301 HSTGAIVKAWSPFIVLTAMVSIWSVKPFKALFAPGGALQDWVLAVPVPFLHRLVEKTPPI 360 Query: 354 VSEATAYAAVFKFDWFSATGTAILFAALLSIVWLKMKPSDAISTFGSTLKELALPIYSIG 413 V EA Y AV++FDWFSATGTAIL AAL+SI L+M+P+ A++TFG TLKEL PIYSIG Sbjct: 361 VGEAAPYDAVYRFDWFSATGTAILIAALISIALLRMRPAQAVATFGETLKELRTPIYSIG 420 Query: 414 MVLAFAFISNYSGLSSTLALALAHTGHAFTFFSPFLGWLGVFLTGSDTSSNALFAALQAT 473 MVLAFAF++NYSGLS+TLALA+AHTG AFTFFSPFLGWLGVFLTGSDTS+NALFAALQA Sbjct: 421 MVLAFAFVANYSGLSATLALAMAHTGDAFTFFSPFLGWLGVFLTGSDTSANALFAALQAN 480 Query: 474 AAQQIGVSDLLLVAANTTGGVTGKMISPQSIAIACAAVGLVGKESDLFRFTVKHSLIFTC 533 AQQIGV ++LLVAANTTGGVTGKMISPQSIAIACAAVGL G+ESDLFRFTVKHSL F Sbjct: 481 TAQQIGVPEVLLVAANTTGGVTGKMISPQSIAIACAAVGLAGRESDLFRFTVKHSLAFAA 540 Query: 534 IVGVITTLQAYVLTWMIP 551 +VG+ITTLQA+VL WMIP Sbjct: 541 MVGIITTLQAHVLPWMIP 558 Lambda K H 0.328 0.140 0.436 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1093 Number of extensions: 36 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 558 Length adjustment: 36 Effective length of query: 515 Effective length of database: 522 Effective search space: 268830 Effective search space used: 268830 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory