GapMind for catabolism of small carbon sources

 

Alignments for a candidate for ilvE in Luteimonas huabeiensis HB2

Align aromatic-amino-acid transaminase TyrB; EC 2.6.1.57 (characterized)
to candidate WP_024888713.1 Z164_RS0100085 aspartate/tyrosine/aromatic aminotransferase

Query= CharProtDB::CH_004054
         (397 letters)



>NCBI__GCF_000559025.1:WP_024888713.1
          Length = 400

 Score =  390 bits (1002), Expect = e-113
 Identities = 206/397 (51%), Positives = 271/397 (68%), Gaps = 3/397 (0%)

Query: 1   MFQKVDAYAGDPILTLMERFKEDPRSDKVNLSIGLYYNEDGIIPQLQAVAEAEARLNAQP 60
           +F  V+   GDPIL L E +  D R  KVNL +G+YY+EDG IP L+AV E + RL A+ 
Sbjct: 3   VFAHVEQVPGDPILGLTEAYNADARPHKVNLGVGIYYDEDGRIPLLRAVGEVKRRL-AEE 61

Query: 61  HGASLYLPMEGLNCYRHAIAPLLFGADHPVLKQQRVATIQTLGGSGALKVGADFLKRYFP 120
             A  YLP++GL  Y  A   LLFGAD  +L + RV T QT+GGSGAL+VGA+ L+   P
Sbjct: 62  GVARGYLPIDGLPAYTRATQRLLFGADSALLAEGRVGTAQTVGGSGALRVGAELLRMALP 121

Query: 121 ESGVWVSDPTWENHVAIFAGAGFEVSTYPWYDEATNGVRFNDLLATLKTLPARSIVLLHP 180
              + +SDP+WENH A+F  AGFEV  Y ++D A +G+ F+ +LA L+ L   + VLLH 
Sbjct: 122 APRIAISDPSWENHRAVFGAAGFEVLGYTYFDAARHGLDFDGMLADLRRLEPGTAVLLHA 181

Query: 181 CCHNPTGADLTNDQWDAVIEILKARELIPFLDIAYQGFGAGMEEDAYAIRAIASAGLP-A 239
           CCHNPTGADL+ +QW  V  +L  R L+PF+DIAYQGF  G++EDA AIR +A +G+P  
Sbjct: 182 CCHNPTGADLSIEQWRQVAALLAERGLVPFVDIAYQGFDKGIDEDAAAIRLLAESGIPNF 241

Query: 240 LVSNSFSKIFSLYGERVGGLSVMCEDAEAAGRVLGQLKATVRRNYSSPPNFGAQVVAAVL 299
           LV++S+SK FSLY ER G LSV+  DA+ A RV  Q+K  +R NYSSPP  G  +VA VL
Sbjct: 242 LVASSYSKSFSLYSERTGALSVVSADADEARRVQSQIKRLIRANYSSPPAHGGLLVAGVL 301

Query: 300 NDEALKASWLAEVEEMRTRILAMRQELVKVLSTEMPERNFDYLLNQRGMFSYTGLSAAQV 359
            D  L+A+W  E+ EMRTRI A+R  LV+ L   +   +F ++ +Q GMFSY+GLS AQV
Sbjct: 302 EDAELRAAWERELGEMRTRIHALRAGLVERLQA-LGAGDFGFIADQAGMFSYSGLSRAQV 360

Query: 360 DRLREEFGVYLIASGRMCVAGLNTANVQRVAKAFAAV 396
           +RLREEF +Y + +GR+CVA LN  N+  VA+A A V
Sbjct: 361 ERLREEFAIYAVGTGRICVAALNDRNLDDVAEAVATV 397


Lambda     K      H
   0.320    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 443
Number of extensions: 22
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 400
Length adjustment: 31
Effective length of query: 366
Effective length of database: 369
Effective search space:   135054
Effective search space used:   135054
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory