GapMind for catabolism of small carbon sources

 

Protein WP_037449677.1 in Skermanella stibiiresistens SB22

Annotation: NCBI__GCF_000576635.1:WP_037449677.1

Length: 358 amino acids

Source: GCF_000576635.1 in NCBI

Candidate for 31 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
D-mannitol catabolism mtlK med MtlK, component of The polyol (mannitol, glucitol (sorbitol), arabitol (arabinitol; lyxitol)) uptake porter, MtlEFGK (characterized) 53% 96% 370.9 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-sorbitol (glucitol) catabolism mtlK med MtlK, component of The polyol (mannitol, glucitol (sorbitol), arabitol (arabinitol; lyxitol)) uptake porter, MtlEFGK (characterized) 53% 96% 370.9 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-maltose catabolism aglK med ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 52% 98% 363.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-maltose catabolism thuK med ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 52% 98% 363.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
sucrose catabolism aglK med ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 52% 98% 363.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
trehalose catabolism aglK med ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 52% 98% 363.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-cellobiose catabolism msiK med MsiK protein, component of The cellobiose/cellotriose (and possibly higher cellooligosaccharides), CebEFGMsiK [MsiK functions to energize several ABC transporters including those for maltose/maltotriose and trehalose] (characterized) 52% 99% 360.5 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-cellobiose catabolism gtsD med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-glucose catabolism gtsD med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
lactose catabolism gtsD med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-maltose catabolism gtsD med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-mannose catabolism TT_C0211 med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
sucrose catabolism gtsD med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
sucrose catabolism thuK med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
trehalose catabolism gtsD med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
trehalose catabolism thuK med Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 52% 97% 358.6 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-galactose catabolism PfGW456L13_1897 med ABC transporter for D-Galactose and D-Glucose, ATPase component (characterized) 49% 95% 344.7 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-maltose catabolism malK med Maltose/maltodextrin import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 50% 98% 344.7 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-xylose catabolism gtsD med ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 48% 95% 340.5 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-glucosamine (chitosamine) catabolism SM_b21216 med ABC transporter for D-Glucosamine, ATPase component (characterized) 51% 99% 339.3 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
N-acetyl-D-glucosamine catabolism SMc02869 med N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 53% 94% 335.1 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-glucosamine (chitosamine) catabolism SMc02869 med N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 53% 94% 335.1 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
L-arabinose catabolism xacK med Xylose/arabinose import ATP-binding protein XacK; EC 7.5.2.13 (characterized, see rationale) 49% 96% 329.3 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-maltose catabolism malK_Bb med ABC-type maltose transport, ATP binding protein (characterized, see rationale) 49% 99% 329.3 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
D-maltose catabolism musK med ABC-type maltose transporter (EC 7.5.2.1) (characterized) 47% 100% 327.4 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
xylitol catabolism Dshi_0546 med ABC transporter for Xylitol, ATPase component (characterized) 49% 100% 324.3 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
xylitol catabolism HSERO_RS17020 med ABC-type sugar transport system, ATPase component protein (characterized, see rationale) 48% 89% 324.3 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
L-arabinose catabolism xacJ med Xylose/arabinose import ATP-binding protein XacJ; EC 7.5.2.13 (characterized, see rationale) 45% 95% 294.3 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
trehalose catabolism treV med TreV, component of Trehalose porter (characterized) 43% 87% 240.7 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
glycerol catabolism glpT lo GlpT, component of Glycerol uptake porter, GlpSTPQV (characterized) 37% 95% 228 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9
glycerol catabolism glpS lo ABC transporter for Glycerol, ATPase component 1 (characterized) 39% 89% 209.9 sn-glycerol-3-phosphate import ATP-binding protein UgpC; EC 7.6.2.10 59% 397.9

Sequence Analysis Tools

View WP_037449677.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MAEVGIRGVRKTYAGGFEAIKGIDCAVGDGEFLVMLGPSGCGKSTLLRMVAGLETISAGE
VSIGGRVVNDLEPKDRDIAMVFQNYALYPHMTVYDNMAYGLKIRGMSKADIESRVHKASD
ILELRPFLDRRPRQLSGGQRQRVAMGRAIVREPKVFLFDEPLSNLDAKLRTQMRVEINRL
QDRLGITSLYVTHDQVEAMTLADRMMVMNGGVAEQIGTPMEVYHRPASTFVAGFIGSPAM
NFLPARLTASGVELNGGHAVPLPAGSGGASAAREITLGIRPEHLTLESGQGIGDIAVKVE
LIEALGADTVVHARLTSSGDPLLARLPGSARVSNGDTLHFAITPGEVHLFDRQTGRRL

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory