Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate WP_035700637.1 BA79_RS02075 pyruvate carboxylase
Query= reanno::pseudo5_N2C3_1:AO356_01595 (649 letters) >NCBI__GCF_000691145.1:WP_035700637.1 Length = 1148 Score = 384 bits (985), Expect = e-110 Identities = 206/454 (45%), Positives = 284/454 (62%), Gaps = 10/454 (2%) Query: 1 MSAPALTTLLVANRGEIACRVMRTARAMGLTTVAVHSATDRDARHSREADIRVDLG-GSK 59 MS + +LVANRGEIA RV R + L TVA++S D + H +AD +G G K Sbjct: 1 MSQRTIQKVLVANRGEIAIRVFRACTELNLRTVAIYSKEDSGSYHRYKADEAYLVGEGKK 60 Query: 60 AADSYLQIDKLIAAAKASGAQAIHPGYGFLSENAGFARAIENAGLIFLGPPASAIDAMGS 119 D+YL I+ +I AK + AIHPGYGFLSEN FAR E G+ F+GP + +D G Sbjct: 61 PIDAYLDIEGIIEIAKRNDVDAIHPGYGFLSENIHFARRCEEEGIQFIGPTSQHLDMFGD 120 Query: 120 KSAAKTLMETAGVPLVPGYHGEAQDLETFRDAAERIGYPVLLKATAGGGGKGMKVVEDVS 179 K A+ + AG+P++PG G ++ E GYP ++KA+ GGGG+GM++V Sbjct: 121 KVKARDEAKKAGIPVIPGSDGPVDSVKEVEKFGEEYGYPFIIKASLGGGGRGMRIVRSKE 180 Query: 180 QLAEALASAQREAQSSFGDSRMLVEKYLLKPRHVEIQVFADQHGNCLYLNERDCSIQRRH 239 +L EA A+ EA+++FG+ + VEK + P+H+E+QV D HGN ++L ERDCS+QRRH Sbjct: 181 ELNEAYDRAKSEAKAAFGNDEVYVEKLIENPKHIEVQVIGDNHGNIIHLYERDCSVQRRH 240 Query: 240 QKVVEEAPAPGLTPQLRRAMGEAAVRAAQAIGYVGAGTVEFLLDARGEFFFMEMNTRLQV 299 QKV+E AP+ L+ QLR + EAAV+ AQ + Y+ AGTVEFL+ A GEF+F+E+N R+QV Sbjct: 241 QKVIEVAPSVSLSDQLREDICEAAVQLAQNVSYINAGTVEFLV-ANGEFYFIEVNPRVQV 299 Query: 300 EHPVTEAITGLDLVAWQIRVAQGEPLPITQAQVP------LLGHAIEVRLYAEDPGNDFL 353 EH +TE ITG+D+V QI VA+G L + +P G AI+ R+ EDP NDF+ Sbjct: 300 EHTITEMITGVDIVQTQILVAKGHDLHSKEVGIPKQEDIFTHGFAIQSRVTTEDPLNDFM 359 Query: 354 PATGRLALYRESAEGPGRRVDSGVE-EGDEISPFYDPMLGKLIAWGEDREQARLRLLSML 412 P TG++ YR S G G R+D+G +G I+P+YD +L KL W +QA +++ L Sbjct: 360 PDTGKIMAYR-SGGGFGVRLDTGNSFQGAVITPYYDSLLVKLSTWALTFDQAAAKMVRNL 418 Query: 413 DEFVIGGLKTNIGFLRRIVAHPAFAAAELDTGFI 446 EF I G+KTNI FL + H F E DT FI Sbjct: 419 QEFRIRGIKTNIPFLENVAKHEKFLRGEYDTSFI 452 Score = 55.1 bits (131), Expect = 2e-11 Identities = 25/76 (32%), Positives = 45/76 (59%) Query: 573 EASHSHQGGLVAPMNGSIVRVLVGVGQTVEAGAQLVVLEAMKMEHSIRAPKAGVIKALYC 632 +A S+ + A M G++++VLV GQ + G L++ EAMKME +++AP + V+ ++ Sbjct: 1071 KADRSNPNHIAASMPGTVIKVLVEKGQKISQGEHLMINEAMKMETTVQAPFSAVVDEIHV 1130 Query: 633 QEGEMVSEGSALVAFE 648 GE + G L+ + Sbjct: 1131 TNGEGIQTGDLLIVLK 1146 Lambda K H 0.319 0.134 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1454 Number of extensions: 61 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 649 Length of database: 1148 Length adjustment: 42 Effective length of query: 607 Effective length of database: 1106 Effective search space: 671342 Effective search space used: 671342 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory