GapMind for catabolism of small carbon sources

 

Protein WP_156994617.1 in Tatumella morbirosei LMG 23360

Annotation: NCBI__GCF_000757425.2:WP_156994617.1

Length: 491 amino acids

Source: GCF_000757425.2 in NCBI

Candidate for 22 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
D-galactose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 (characterized) 87% 97% 860.5 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
D-cellobiose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized) 87% 97% 858.6 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
D-glucose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized) 87% 97% 858.6 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
lactose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized) 87% 97% 858.6 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
D-maltose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized) 87% 97% 858.6 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
sucrose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized) 87% 97% 858.6 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
trehalose catabolism mglA hi Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized) 87% 97% 858.6 m-Inositol ABC transporter, ATPase component (itaA) 49% 470.7
myo-inositol catabolism PS417_11890 med m-Inositol ABC transporter, ATPase component (itaA) (characterized) 49% 93% 470.7 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-xylose catabolism xylG med Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized) 44% 98% 438.7 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
L-fucose catabolism HSERO_RS05250 med Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale) 45% 94% 424.9 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-ribose catabolism rbsA med ribose transport, ATP-binding protein RbsA; EC 3.6.3.17 (characterized) 43% 97% 416 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-galactose catabolism BPHYT_RS16930 med Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale) 43% 95% 393.3 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-xylose catabolism xylK_Tm med Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale) 41% 95% 380.9 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
L-rhamnose catabolism rhaT' med RhaT, component of Rhamnose porter (Richardson et al., 2004) (Transport activity is dependent on rhamnokinase (RhaK; AAQ92412) activity (Richardson and Oresnik, 2007) This could be an example of group translocation!) (characterized) 40% 95% 368.6 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-mannose catabolism HSERO_RS03640 lo Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale) 40% 94% 372.1 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
xylitol catabolism PS417_12065 lo D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale) 40% 98% 355.1 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
L-arabinose catabolism gguA lo GguA aka ATU2347 aka AGR_C_4264, component of Multiple sugar (arabinose, xylose, galactose, glucose, fucose) putative porter (characterized) 38% 97% 350.9 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-galactose catabolism gguA lo GguA aka ATU2347 aka AGR_C_4264, component of Multiple sugar (arabinose, xylose, galactose, glucose, fucose) putative porter (characterized) 38% 97% 350.9 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
D-fructose catabolism fruK lo Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized) 37% 96% 329.7 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
sucrose catabolism fruK lo Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized) 37% 96% 329.7 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
2'-deoxyinosine catabolism nupA lo Purine/cytidine ABC transporter ATP-binding protein, component of General nucleoside uptake porter, NupABC/BmpA (transports all common nucleosides as well as 5-fluorocytidine, inosine, deoxyuridine and xanthosine) (Martinussen et al., 2010) (Most similar to 3.A.1.2.12). NupA is 506aas with two ABC (C) domains. NupB has 8 predicted TMSs, NupC has 9 or 10 predicted TMSs in a 4 + 1 (or 2) + 4 arrangement (characterized) 35% 96% 302.8 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5
L-arabinose catabolism xylGsa lo Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale) 36% 94% 161 Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 87% 860.5

Sequence Analysis Tools

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MQDISKSFPGVKALDHVNLDVRPYSIHALMGENGAGKSTLLKCLFGIYSKDSGKILFRGK
EVNFKSAKEALENGVSMVHQELNLVTQRSVMDNMWLGRYPLKGIFVDQHKMYQDTKQIFD
ELDINIDPRDKVATLSVSQMQMVEIAKAVSYDARIVIMDEPTSSLTEKEVNHLFTIIRKL
KDRGCGIVYISHKMEEIFQLCDDITVLRDGQWIATQPLAGMNMEQIIAMMVGRSLTQRFP
DKQNHPGNVILEVRNLTSLRQPSIRDISFDLHEGEILGIAGLVGAKRTDIVETLFGLREK
SGGTIRLHGRPIKNHSANEAINHGFALVTEERRTTGIYAYLDIGFNSLISNIKKYKNSLG
FLDNSRMKSDTQWVIDAMRVKTPGHHTSIGSLSGGNQQKVIIGRWLLTQPEILMLDEPTR
GIDVGAKFEIYQLISELAKRGKGIIIISSEMPELLGVTDRILVMSNGRVAGIVDTKTATQ
NEIIRLASLHL

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory