GapMind for catabolism of small carbon sources

 

Alignments for a candidate for rbsK in Tatumella morbirosei LMG 23360

Align Ribokinase (EC 2.7.1.15) (characterized)
to candidate WP_038016161.1 HA49_RS18530 ribokinase

Query= reanno::Koxy:BWI76_RS00290
         (309 letters)



>NCBI__GCF_000757425.2:WP_038016161.1
          Length = 309

 Score =  454 bits (1167), Expect = e-132
 Identities = 228/309 (73%), Positives = 263/309 (85%)

Query: 1   MKTAGKLVVLGSINADHILNLDAFPTPGETVTGHHYQVAFGGKGANQAVAAGRSGANISF 60
           MK  GKLVVLGSIN DHI++L  FP PGETVTG  YQVAFGGKGANQAVAAGRSGA+I+F
Sbjct: 1   MKNTGKLVVLGSINVDHIVSLVQFPRPGETVTGKQYQVAFGGKGANQAVAAGRSGADIAF 60

Query: 61  IACTGDDDIGERVRRQLESDNIDVAPVRAVAGESTGVALIFVNAEGENTIGIHAGANAAL 120
           IAC G DD+GER+R+QL  D IDV P+  V GESTGVALIFVN EGEN+IGI++GANAAL
Sbjct: 61  IACVGQDDMGERIRQQLADDRIDVTPLVTVEGESTGVALIFVNGEGENSIGIYSGANAAL 120

Query: 121 CVAQVDAEKERIASAQALLMQLESPLESVLAAAKIAHQNQTSVILNPAPARELPDELLTL 180
               VD + + IA A ALLMQLESPL+SVLAAA IA QNQT VILNPAPA EL DELL+L
Sbjct: 121 TTDLVDQQHQVIADADALLMQLESPLDSVLAAAHIARQNQTQVILNPAPATELSDELLSL 180

Query: 181 VDIITPNETEAEKLTGVRVENDEDAAKAAKVLHDKGIGTVIITLGSRGVWASSEGNGRRV 240
           VDIITPNETEA+ LTGV V+ D+DAA+AA+VLHDKGIG+V+ITLG RGVW S +G G+R+
Sbjct: 181 VDIITPNETEAQTLTGVTVKTDDDAARAAQVLHDKGIGSVLITLGQRGVWLSEQGKGQRI 240

Query: 241 PGFKVQAVDTIAAGDTFNGALVTALLEGRELAEAIRFAHAAAAIAVTRKGAQPSVPWRKE 300
           PGF+V+A+DTIAAGDTFNGAL+TALLE + + +++RFAHAAAAIAVTR GAQPSVPWR E
Sbjct: 241 PGFRVEAIDTIAAGDTFNGALITALLENKTMEQSVRFAHAAAAIAVTRHGAQPSVPWRDE 300

Query: 301 IDEFLRQQG 309
           ID FL+ QG
Sbjct: 301 IDHFLQAQG 309


Lambda     K      H
   0.315    0.131    0.366 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 366
Number of extensions: 14
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 309
Length of database: 309
Length adjustment: 27
Effective length of query: 282
Effective length of database: 282
Effective search space:    79524
Effective search space used:    79524
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.5 bits)
S2: 48 (23.1 bits)

Align candidate WP_038016161.1 HA49_RS18530 (ribokinase)
to HMM TIGR02152 (rbsK: ribokinase (EC 2.7.1.15))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR02152.hmm
# target sequence database:        /tmp/gapView.3586823.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR02152  [M=298]
Accession:   TIGR02152
Description: D_ribokin_bact: ribokinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                             Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                             -----------
   1.9e-113  364.7   4.7   2.1e-113  364.5   4.7    1.0  1  NCBI__GCF_000757425.2:WP_038016161.1  


Domain annotation for each sequence (and alignments):
>> NCBI__GCF_000757425.2:WP_038016161.1  
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  364.5   4.7  2.1e-113  2.1e-113       2     297 ..       8     302 ..       7     303 .. 0.99

  Alignments for each domain:
  == domain 1  score: 364.5 bits;  conditional E-value: 2.1e-113
                             TIGR02152   2 vvvGSinvDlvlrvkrlpkpGetvkaeefkiaaGGKGANQAvaaarlgaevsmigkvGkDefgeellenlkke 74 
                                           vv+GSinvD++++  ++p+pGetv+++++++a GGKGANQAvaa r ga++++i++vG+D++ge+++++l+++
  NCBI__GCF_000757425.2:WP_038016161.1   8 VVLGSINVDHIVSLVQFPRPGETVTGKQYQVAFGGKGANQAVAAGRSGADIAFIACVGQDDMGERIRQQLADD 80 
                                           8************************************************************************ PP

                             TIGR02152  75 gidteyvkkvkktstGvAlilvdeegeNsIvvvaGaneeltpedvkaaeekikesdlvllQlEipletveeal 147
                                            id++ + +v+ +stGvAli+v+ egeNsI +++Gan+ lt++ v+++++ i+++d +l+QlE+pl++v +a+
  NCBI__GCF_000757425.2:WP_038016161.1  81 RIDVTPLVTVEGESTGVALIFVNGEGENSIGIYSGANAALTTDLVDQQHQVIADADALLMQLESPLDSVLAAA 153
                                           ************************************************************************* PP

                             TIGR02152 148 kiakkagvkvllnPAPaekkldeellslvdiivpNetEaeiLtgievedledaekaaekllekgvkaviitlG 220
                                           +ia++++++v+lnPAPa++ l++ellslvdii+pNetEa++Ltg++v++ +da +aa+ l++kg+  v+itlG
  NCBI__GCF_000757425.2:WP_038016161.1 154 HIARQNQTQVILNPAPATE-LSDELLSLVDIITPNETEAQTLTGVTVKTDDDAARAAQVLHDKGIGSVLITLG 225
                                           *****************66.99*************************************************** PP

                             TIGR02152 221 skGallvskdekklipalkvkavDttaAGDtFigalavaLaegksledavrfanaaaalsVtrkGaqssiPtk 293
                                           ++G+ l+++++ + ip ++v+a+Dt aAGDtF+gal +aL e+k++e++vrfa+aaaa++Vtr+Gaq+s+P +
  NCBI__GCF_000757425.2:WP_038016161.1 226 QRGVWLSEQGKGQRIPGFRVEAIDTIAAGDTFNGALITALLENKTMEQSVRFAHAAAAIAVTRHGAQPSVPWR 298
                                           ************************************************************************* PP

                             TIGR02152 294 eeve 297
                                           +e++
  NCBI__GCF_000757425.2:WP_038016161.1 299 DEID 302
                                           **96 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (298 nodes)
Target sequences:                          1  (309 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.00u 0.00s 00:00:00.00 Elapsed: 00:00:00.00
# Mc/sec: 16.97
//
[ok]

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory