GapMind for catabolism of small carbon sources

 

Alignments for a candidate for xacF in Halomonas xinjiangensis TRM 0175

Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate WP_043532311.1 JH15_RS16505 NAD-dependent succinate-semialdehyde dehydrogenase

Query= SwissProt::Q1JUP4
         (481 letters)



>NCBI__GCF_000759345.1:WP_043532311.1
          Length = 487

 Score =  378 bits (970), Expect = e-109
 Identities = 207/467 (44%), Positives = 276/467 (59%), Gaps = 1/467 (0%)

Query: 13  IDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHERAA 72
           IDG WV A SG+ IDV NPA G+ IGRV   G A+ +RA+ AA + F AWR   A ERA 
Sbjct: 16  IDGSWVAADSGEQIDVFNPANGEVIGRVPRLGRAETERAITAADAAFPAWRAHTAQERAD 75

Query: 73  TMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVPPR 132
            + K   L+ E  + +A +MT EQGKPL EA  E+  AA  + WFA+E RR+YG  +P  
Sbjct: 76  ILMKWHDLMHEHQEELATIMTLEQGKPLKEAAGEIAYAASFLRWFAEEARRMYGETIPAA 135

Query: 133 NLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAALLR 192
               +  + K+PVG V A TPWNFP   + RK+ AALA GC  +VK   +TP S  AL  
Sbjct: 136 KPNQRIVITKQPVGVVGAITPWNFPAAMITRKVGAALAAGCPIVVKPASQTPFSATALAL 195

Query: 193 AFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKRATM 252
               AGVP GV  +V G   EI++ L   P +RK+TFTGST VG+QL S A  H+++ ++
Sbjct: 196 LAERAGVPRGVFNVVTGSAREIAAALTESPEVRKITFTGSTEVGRQLMSQASQHIQKISL 255

Query: 253 ELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRAL-VKHA 311
           ELGG+AP IV EDAD+  AV  A  AKFRN GQ C+   RFLV +S+ + F   L V   
Sbjct: 256 ELGGNAPFIVFEDADLDAAVDGAMAAKFRNGGQTCVCTNRFLVQSSVVNAFCEKLAVAMN 315

Query: 312 EGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPTVI 371
             L+VG+GL++   +G L +   +  +++ + +A   GA +  GG      GNFF PT++
Sbjct: 316 SELRVGDGLKDDVNIGPLIDADGVEKVSAHVHDAVDKGAELLLGGNPHPLGGNFFTPTLV 375

Query: 372 ANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQRL 431
                D  V   E FGP+AA+  FD  E+A+A AN   FGLA Y ++R  A V  + + L
Sbjct: 376 NGANADMLVAQEETFGPLAAVFPFDDEEDAVAMANDTQFGLASYFYSRDLARVWRVAESL 435

Query: 432 EVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVTV 478
           E GM+ IN         PFGGVK SG G EGG + LE ++ TK + +
Sbjct: 436 EYGMVGINTGLISNAAAPFGGVKASGLGREGGRQGLEEFVETKYLCI 482


Lambda     K      H
   0.318    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 648
Number of extensions: 27
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 481
Length of database: 487
Length adjustment: 34
Effective length of query: 447
Effective length of database: 453
Effective search space:   202491
Effective search space used:   202491
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory