Align Succinate-semialdehyde dehydrogenase, mitochondrial; At-SSADH1; Aldehyde dehydrogenase family 5 member F1; NAD(+)-dependent succinic semialdehyde dehydrogenase; Protein ENLARGED FIL EXPRESSING DOMAIN 1; EC 1.2.1.24 (characterized)
to candidate WP_033100857.1 JG50_RS0109305 aldehyde dehydrogenase
Query= SwissProt::Q9SAK4 (528 letters) >NCBI__GCF_000763315.1:WP_033100857.1 Length = 499 Score = 340 bits (873), Expect = 6e-98 Identities = 190/473 (40%), Positives = 285/473 (60%), Gaps = 11/473 (2%) Query: 56 LIGGKWLDSYDNKTIKVNNPATGEIIADVACMGTKETNDAIASSYEAFTS--WSRLTAGE 113 LIGG+ + S + V NPA GE IA VA + + A+ S+ +A ++ W+R A Sbjct: 16 LIGGEHVPSESGEYFTVYNPANGEAIAQVAKATRADVDRAVQSARDALSNSKWARWPASR 75 Query: 114 RSKVLRRWYDLLIAHKEELGQLITLEQGKPLKEAIGEVAYGASFIEYYAEEAKRVYGDII 173 R ++L + ++ +L +L L GK L A G+V E YA + G Sbjct: 76 RGQILNKIASIMRQRFNDLVELEVLNSGKALSAAKGQVMQAIEDFELYAGAVTTIQGHTK 135 Query: 174 P-PNLSDRRLLVLKQPVGVVGAITPWNFPLAMITRKVGPALASGCTVVVKPSELTPLTAL 232 P PN +K+PVGV I PWN+PL M KV PALA+GCT+++KP+ LTPLTAL Sbjct: 136 PVPNGFFH--YSVKEPVGVCAQIVPWNYPLMMTAWKVAPALAAGCTLILKPASLTPLTAL 193 Query: 233 AAAELALQAGVPPGALNVVMGNAPEIGDALLTSPQVRKITFTGSTAVGKKLMAAAAPTVK 292 A++ +AGVP G +NV+ G+ ++G L+ P V K+ FTG T GK +MA A+ T+K Sbjct: 194 VLADICHEAGVPAGVINVITGSGADVGSYLVEHPGVDKVAFTGETTTGKDIMAKASDTLK 253 Query: 293 KVSLELGGNAPSIVFDDADLDVAVKGTLAAKFRNSGQTCVCANRVLVQDGIYDKFAEAFS 352 +V+LELGG +P+IVF DADL+ AV G++ + N+GQ+C +R+ V + IYD F E F Sbjct: 254 RVTLELGGKSPNIVFADADLEAAVNGSVYGIYYNTGQSCEARSRLFVHEDIYDAFIEKFV 313 Query: 353 EAVQKLEVGDGFRDGTTQGPLINDAAVQKVETFVQDAVSKGAKIIIGGKRHSLGMTF--- 409 E +KL++GD F + T G +I+ ++++V+ A +GA+++ GGKR G F Sbjct: 314 EQTKKLKLGDPFNEETHVGAVISQGQWDTIDSYVKLAEKEGARVLYGGKRPE-GEEFAKG 372 Query: 410 --YEPTVIRDVSDNMIMSKEEIFGPVAPLIRFKTEEDAIRIANDTIAGLAAYIFTNSVQR 467 Y PTVI D +++M +++EEIFGPV +I+FK E++ +++AN+T+ GLAA ++T R Sbjct: 373 YWYMPTVIVDATNDMRVAQEEIFGPVVVVIKFKDEKEVVKLANETMYGLAAAVWTRDFGR 432 Query: 468 SWRVFEALEYGLVGVNEGLISTEVAPFGGVKQSGLGREGSKYGMDEYLEIKYV 520 + RV L+ G+V +N + PFGG KQSG GRE + ++ Y+E K V Sbjct: 433 AHRVASQLKAGVVMINNPFSAFPGLPFGGYKQSGFGRELAIESLELYMETKSV 485 Lambda K H 0.317 0.134 0.383 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 582 Number of extensions: 24 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 528 Length of database: 499 Length adjustment: 35 Effective length of query: 493 Effective length of database: 464 Effective search space: 228752 Effective search space used: 228752 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory