Align Serine transporter, SerP2 or YdgB, of 459 aas and 12 TMSs (Trip et al. 2013). Transports L-alanine (Km = 20 μM), D-alanine (Km = 38 μM), L-serine, D-serine (Km = 356 μM) and glycine (Noens and Lolkema 2015). The encoding gene is adjacent to the one encoding SerP1 (TC# 2.A.3.1.21) (characterized)
to candidate WP_033100143.1 JG50_RS0105800 amino acid permease
Query= TCDB::F2HQ24 (457 letters) >NCBI__GCF_000763315.1:WP_033100143.1 Length = 469 Score = 229 bits (584), Expect = 1e-64 Identities = 151/464 (32%), Positives = 244/464 (52%), Gaps = 19/464 (4%) Query: 1 MNTNQNEENKPSQRGLKNRHIQLIAIAGTIGTGLFLGAGKSIHLTGP-SIIFVYLIIGAL 59 MNT+Q ++ + Q +K+RH+ +IA+ G IGTG FL G +I GP + Y+I G Sbjct: 1 MNTSQEQQGQLKQ-SMKSRHLFMIALGGVIGTGFFLSTGFTIGQAGPLGAVLSYIIGGIC 59 Query: 60 MYILLRAIGEMLYQDPNQHSFLNFVSRYLGEKPGYFIQWSYLLVVVFVAMAELIAIGTYI 119 MY+++ +GE+ P+ SF ++ ++++G G+ + W Y L EL +IG + Sbjct: 60 MYLIMLCLGELSVAMPSAGSFQDYTTKFIGPATGFAVGWMYWLGWAVTVALELTSIGLTM 119 Query: 120 NFWLPDLPIWMTEVFVLVLLTLLNTLNPKFFGETEFWFGMIKIVAIIGLILT--AIILIF 177 W P + IW+ + V+L ++N + K F ETEFWF IK++ II I+ A + F Sbjct: 120 KHWFPHVSIWVWCLIFGVVLFVVNAFSAKGFAETEFWFASIKVITIILFIILGGAAMFGF 179 Query: 178 SHYHTGTDTVSVTNITKGFEFFPNGLSNFFESFQMVMFAFVSMEFIGMTAAETDNPRPTL 237 H G +++ T+ FPNG N + V F+F E IG+ + E++NP+ T+ Sbjct: 180 IHLKGGEAAPYLSHFTQD-GLFPNGFINVLVTMVAVNFSFQGTELIGIASGESENPQKTI 238 Query: 238 KKAINQIPIRIVLFYVGALLAIMSIYQWRDIPADKSPFVTIFQLIGIKWAAALVNFVVLT 297 +AI Q R +LF+ A+ + + W+ +SPFVT+ IGI + A ++NFV+LT Sbjct: 239 PRAIRQTVWRTILFFGLAVFVLCGLLPWKQAGVMESPFVTVLDKIGIPYDADIMNFVILT 298 Query: 298 SAASALNSALFSITRNLYSLSKLNNDKILKPFTKFSKAGVPVNALLFTSLLILFTPFISM 357 + S NS L++ TR LY+LSK N F + +K GVP NAL+ S+ I +S Sbjct: 299 ALLSVANSGLYATTRMLYALSK--NGMASPVFGRLTKRGVPFNALIL-SMAIACLSLLSY 355 Query: 358 IPAISNSFVFITSVATNLFLVVYLMTLITYLKYRKSSDFDPKGFVLPAAHIFIPL----A 413 A ++ + S+A ++ ++ + +R+ + +G L A H PL Sbjct: 356 KFAEDTVYMVLLSIAGMTAILAWMSIAASQFFFRRR--YLAEGGKLEALHFKTPLYPVVP 413 Query: 414 IAGFVLIFISLFC--FKDTIVPAI--GSVIWVLIFGL-FTFFKK 452 I F++ I+L F T PAI G ++L + L F FF+K Sbjct: 414 ILAFLINLIALISLWFDPTQRPAIEYGIPAFILCYILYFLFFRK 457 Lambda K H 0.330 0.144 0.431 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 574 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 457 Length of database: 469 Length adjustment: 33 Effective length of query: 424 Effective length of database: 436 Effective search space: 184864 Effective search space used: 184864 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory