Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate WP_043918762.1 jaqu_RS09665 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >NCBI__GCF_000877395.1:WP_043918762.1 Length = 587 Score = 282 bits (721), Expect = 3e-80 Identities = 183/547 (33%), Positives = 287/547 (52%), Gaps = 45/547 (8%) Query: 44 RPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPVFSASENTFRPTAMMYRN 103 +P +G+ W++ PCN L A+ VK GV +A G P E + ++ M + Sbjct: 41 QPFVGVATCWNEAAPCNIALNRQAQAVKLGVKQASGTPREFTTITVTDGIAMGHEGMRSS 100 Query: 104 LA-----ALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASCDLPSIVVTGGPMLNGYF 158 LA A VE +RG D V L GCDK+ P ++M + PS+ + GG +L G Sbjct: 101 LASRDAIADTVELTMRGHCYDALVGLAGCDKSLPGMMMAMVRLNTPSVFIYGGSILPG-- 158 Query: 159 RGERVGSGTHL---WKFSEMV-----------KAGEMTQAEFLEAEASMSRSSGTCNTMG 204 + +G ++ +K ++ +AG ++ E S+G C Sbjct: 159 ---KAPAGANVPDEYKNRDLTVQDMFEAVGNHQAGNLSDEALDVLERVACPSAGACGGQF 215 Query: 205 TASTMASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSEIMTKQAFE 264 TA+TMA ++EA+G+AL ++ P R + +G ++++++ +++ +I+T+++ E Sbjct: 216 TANTMACVSEAIGLALPNSSGAPAPYESRDQYSIASGEAVMRLLEKNIRARDIVTRKSLE 275 Query: 265 NAIRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYLMEEFF 324 NA R A GGSTNA +HL AIA GID L D RD P V+L P G+Y+ ++ + Sbjct: 276 NAARVVACTGGSTNAGLHLPAIAHEAGIDFDLFDVCEIFRDTPYFVDLKPGGQYVAKDLY 335 Query: 325 YAGGLPVVLKRLGEAGLLHKDALTVSGETVWDEVKDVVNWNED--VILPAEKALTSSGGI 382 AGG+PVV+K L +AGL+H+D +T +G+T+ EV D V D VI P + +T +GG+ Sbjct: 336 EAGGVPVVMKELRKAGLIHEDCITATGKTI-GEVLDEVKGEADGKVIYPVDAPITPTGGV 394 Query: 383 VVLRGNLAPKGAVLKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENCIMVMKN 442 V L+GNLAP GA++K + G A VFE +D A + +E ++V++N Sbjct: 395 VGLKGNLAPDGAIVKVAGIPSQHQRFTGPARVFECEEDAFAAVK--ARAYEEGEVLVIRN 452 Query: 443 CGPKGYPGMAE-------VGNMGLPPKVLKKGILDMVRISDARMSGTAYGTVVLHTSPEA 495 GP G PGM E + G+ KV I+D R SG G V H PEA Sbjct: 453 EGPAGGPGMREMLATTAALSGQGMGKKV--------ALITDGRFSGATRGFCVGHVGPEA 504 Query: 496 AVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARRLAEWQ-PNHDLPTSGYAFLHQQHV 554 A GGP+ ++++GD+I +D L +D+++EEL R A+W+ P + SG + + + V Sbjct: 505 AHGGPIGMLRDGDVITIDAIKGELSVDLTEEELVARKADWKGPRETIYASGALWKYARLV 564 Query: 555 EGADTGA 561 A TGA Sbjct: 565 GPARTGA 571 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 931 Number of extensions: 54 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 587 Length adjustment: 36 Effective length of query: 543 Effective length of database: 551 Effective search space: 299193 Effective search space used: 299193 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory