GapMind for catabolism of small carbon sources

 

Alignments for a candidate for xylH in Jannaschia aquimarina GSW-M26

Align D-xylose ABC transporter, permease protein (characterized)
to candidate WP_043918417.1 jaqu_RS07620 sugar ABC transporter permease

Query= CharProtDB::CH_024441
         (393 letters)



>NCBI__GCF_000877395.1:WP_043918417.1
          Length = 443

 Score =  241 bits (615), Expect = 3e-68
 Identities = 152/406 (37%), Positives = 224/406 (55%), Gaps = 39/406 (9%)

Query: 20  SGLKSLNL--QVFVMIAAIIAIMLFFTWTTDGAYLSARNVSNLLRQTAITGILAVGMVFV 77
           +GL++L +  ++  MI A + I L F + +DG +++ RN+ NL  QTA   I+A GMVF+
Sbjct: 28  TGLRALEVDGRLLGMIGAFVVICLAFHFASDGRFITPRNLFNLTIQTASVAIMATGMVFI 87

Query: 78  IISAEIDLSVGSMMGLLGGVAAICDV-WL-------GWPL--PLTIIVTLVLGLLLGAWN 127
           I+   IDLSVGS++     V A+    WL       G PL  PL I+  ++ G  +GA +
Sbjct: 88  IVMRHIDLSVGSVLATCSAVMAMTQTAWLPALGLELGNPLLAPLAIVTGILAGAAIGALH 147

Query: 128 GWWVAYRKVPSFIVTLAGMLAFRGILIGITNGTTVSPTSAAMSQIG--QSYLPASTGFII 185
           GW V Y  +P+FIVTL G+L +R +   +TNG T+ P      Q+G  +  L  +  +I+
Sbjct: 148 GWLVGYLAIPAFIVTLGGLLVWRNVAWYLTNGQTIGPLDPTFMQLGGIRGTLGETWSWIV 207

Query: 186 GALGLMAFVGWQWRGRMRRQALGLQSPASTAVVGRQALTAIIVLGAIWLLNDYR------ 239
           G + +   V   W  R  +           A     A+ A+++LG + ++N Y       
Sbjct: 208 GLIAVALAVWTLWSARRDKVEHDFPVKPLWAEGVVAAIVAVLILGFVAVMNAYEIPERVL 267

Query: 240 -------------------GVPTPVLLLTLLLLGGMFMATRTAFGRRIYAIGGNLEAARL 280
                              GVP  VLL+ L+ +G   +A RT FGR IYA GGN +AA L
Sbjct: 268 AREFRARGLEMPEGLSMGYGVPYSVLLVVLVAIGMTVIARRTRFGRYIYATGGNPDAAEL 327

Query: 281 SGINVERTKLAVFAINGLMVAIAGLILSSRLGAGSPSAGNIAELDAIAACVIGGTSLAGG 340
           SGI++    + VFA+ G + AI+ ++ S+RL   S   G + EL  IAA VIGGT+L GG
Sbjct: 328 SGIDIRMLTVKVFALLGALCAISAVVASARLANHSNDIGTLDELRVIAAAVIGGTALKGG 387

Query: 341 VGSVAGAVMGAFIMASLDNGMSMMDVPTFWQYIVKGAILLLAVWMD 386
           VG++ GA++GA IM SL +GM+M+ V    Q IV GA+L+LAV +D
Sbjct: 388 VGTIYGALLGALIMQSLQSGMAMVGVDAPLQNIVVGAVLVLAVLID 433


Lambda     K      H
   0.325    0.138    0.415 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 470
Number of extensions: 23
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 393
Length of database: 443
Length adjustment: 32
Effective length of query: 361
Effective length of database: 411
Effective search space:   148371
Effective search space used:   148371
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory