Align The high affinity sugar:H+ symporter (sugar uptake) porter of 514 aas and 12 TMSs, STP10. It transports glucose, galactose and mannose, and is therefore a hexose transporter (Rottmann et al. 2016). The 2.4 (characterized)
to candidate WP_007701521.1 AFK65_RS16050 sugar porter family MFS transporter
Query= TCDB::Q9LT15 (514 letters) >NCBI__GCF_001277175.1:WP_007701521.1 Length = 464 Score = 244 bits (622), Expect = 6e-69 Identities = 160/477 (33%), Positives = 258/477 (54%), Gaps = 38/477 (7%) Query: 14 GRSYEGGVTAFVIMTCIVAAMGGLLFGYDLGISGGVTSMEEFLTKFFPQVESQMKKAKHD 73 GRS++ A C +AA+ GLLFG D+G+ G F+ K F Q Sbjct: 8 GRSHK----AMTFFVCFLAALAGLLFGLDIGVIAGALP---FIAKDFNITPHQQ------ 54 Query: 74 TAYCKFDNQMLQLFTSSLYLAALVASFMASVITRKHGRKVSMFIGGLAFLIGALFNAFAV 133 + SS+ A V + + ++ + GRK S+ IG + F+IG+L +AFA Sbjct: 55 -----------EWVVSSMMFGAAVGAVGSGWLSSRLGRKYSLMIGSVLFVIGSLCSAFAP 103 Query: 134 NVSMLIIGRLLLGVGVGFANQSTPVYLSEMAPAKIRGALNIGFQMAITIGILVANLINYG 193 N +LII R+LLG+ VG A+ + P+YLSE+AP KIRG++ +Q+ ITIGIL A L + Sbjct: 104 NAEVLIISRVLLGLAVGIASYTAPLYLSEIAPEKIRGSMISMYQLMITIGILGAYLSD-- 161 Query: 194 TSKMAQHGWRVSLGLAAVPAVVMVIGSFILPDTPNSMLERGKNEEAKQMLKKIRGADNVD 253 T+ WR LG+ +PA++++IG F LPD+P + + +A+++L ++R D+ Sbjct: 162 TAFSYSGAWRWMLGVITIPAILLLIGVFFLPDSPRWFAAKRRFHDAERVLLRLR--DSSA 219 Query: 254 HEFQDLIDAVEAAKKVENPWKNIME-SKYRPALIFCSAIPFFQQITGINVIMFYAPVLFK 312 ++L + E+ K + W + S +R A+ + QQ TG+NVIM+YAP +F+ Sbjct: 220 EAKRELEEIRESLKVKQGGWALFKDNSNFRRAVFLGILLQVMQQFTGMNVIMYYAPKIFE 279 Query: 313 TLGFGDDAALM-SAVITGVVNMLSTFVSIYAVDRYGRRLLFLEGGIQMFICQLLVGSFIG 371 G+ + M VI G+ N+L+TF++I VDR+GR+ + G I M ++G+ + Sbjct: 280 LAGYSNTTEQMWGTVIVGLTNVLATFIAIGLVDRWGRKPTLILGFIVMAAGMGILGTML- 338 Query: 372 ARFGTSGTGTLTPATADWILAFICVYVAGFAWSWGPLGWLVPSEICPLEIRPAGQAINVS 431 G +PA + +A + +++ GFA S GPL W++ SEI PL+ R G ++ + Sbjct: 339 ------HMGIDSPAGQYFAVAMLLMFIIGFAMSAGPLIWVLCSEIQPLKGRDFGITLSTT 392 Query: 432 VNMFFTFLIGQFFLTMLCHM-KFGLFYFFASMVAIMTVFIYFLLPETKGVPIEEMGR 487 N ++G FLTML + F+ +A + V +L+PETK V +E + R Sbjct: 393 TNWIANMIVGATFLTMLNTLGNAPTFWVYAGLNLFFIVLTVWLVPETKHVSLEHIER 449 Lambda K H 0.327 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 633 Number of extensions: 28 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 514 Length of database: 464 Length adjustment: 34 Effective length of query: 480 Effective length of database: 430 Effective search space: 206400 Effective search space used: 206400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory