GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Amantichitinum ursilacus IGB-41

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; Iron-responsive protein-like; IRP-like; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate WP_053935982.1 WG78_RS01355 aconitate hydratase AcnA

Query= SwissProt::Q5SMF6
         (902 letters)



>NCBI__GCF_001294205.1:WP_053935982.1
          Length = 897

 Score = 1000 bits (2586), Expect = 0.0
 Identities = 515/899 (57%), Positives = 654/899 (72%), Gaps = 20/899 (2%)

Query: 7   TLKTLTTKSGTYGYYDLQELERKGVAEVSRLPFSIRVMLESLLRNEDGYQVTREDIEALA 66
           TLKTL   +    YY L  LE  G+  +SRLP SIR++LES+LRN DG +VT E +  LA
Sbjct: 8   TLKTLPDTAPALQYYSLPALEAAGIGPISRLPVSIRLVLESVLRNCDGKKVTEEHVRQLA 67

Query: 67  RWRPDPGEIN-VPLKLARVILQDFTGVPAVVDLAAMRDAIKAKGGDPKRINPVVPADLVI 125
            W+P    ++ +P  +ARV+LQDFTGVP + DLAAMR+     G +PK I P+VP DLV+
Sbjct: 68  NWKPTGHRVDEIPFVVARVVLQDFTGVPLLADLAAMRNVADKLGKNPKLIEPLVPVDLVV 127

Query: 126 DHSVQVDAFGTAYAFFYNVEKEYERNRERYLLLKWAQNALENFRVVPPGTGIVHQVNIEY 185
           DHSVQVD +GT  A   N+E E++RN ERY  +KW   A + F+VVPPG GIVHQVN+EY
Sbjct: 128 DHSVQVDYYGTPDALRKNMEMEFQRNSERYQFMKWGMQAFDTFKVVPPGVGIVHQVNLEY 187

Query: 186 LTKVVMTGKRDGLTLAFPDSLVGTDSHTTMVNGLGVLGWGVGGIEAEAVMLGQPYYMLAP 245
           L + V    RDG+  AFPD+LVGTDSHTTM+N +GV+GWGVGGIEAEA MLGQP Y L P
Sbjct: 188 LFRGVQV--RDGI--AFPDTLVGTDSHTTMINAVGVVGWGVGGIEAEAGMLGQPVYFLTP 243

Query: 246 RVVGFKLYGELPEGATATDLVLTVTEMLRKHGVVGKFVEFYGPGVAKLSTPDRATIANMA 305
            V+G +L G L EG TATDLVL VTE+LR   VVGKFVEF+GPG A L+  DRATIANMA
Sbjct: 244 DVIGVELSGHLREGVTATDLVLAVTELLRHEKVVGKFVEFFGPGTASLTVTDRATIANMA 303

Query: 306 PEYGATMGFFPVDEETLNYLRQTGRPEELVELVEAYTKAVGLFRTPEAEEKVQYSEYLEL 365
           PEYGATMGFFPVDE+T+ YL+ TGR +  +   EAY KA  LF  P+A E + Y+  ++L
Sbjct: 304 PEYGATMGFFPVDEKTIAYLQGTGRTDAEIAQFEAYFKAQNLFGIPQAGE-IDYTRVVKL 362

Query: 366 DLSAVEPSLAGPKRPQDRVPLKEVKKSFLAHLTKPVKERGFGLSEDQLQRKVLVKRRDEE 425
           DL  + PSLAGPKRPQDR+ L  +K SF +    PV   GF     QL  +    R+   
Sbjct: 363 DLDGIVPSLAGPKRPQDRIALTAMKTSFNSLFAAPVTANGFNKKSSQLAERYPTARQG-- 420

Query: 426 FELTHGSVVIAAITSCTNTSNPSVMLGAGLLAKKAVEAGLDRKPWVKTSLAPGSKVVTDY 485
            ++ +G ++IAAITSCTNTSNP VML +GLLAKKAVE GL  KP +KTSLAPGS+VVT+Y
Sbjct: 421 IDIGNGDILIAAITSCTNTSNPGVMLASGLLAKKAVEKGLSVKPHIKTSLAPGSRVVTEY 480

Query: 486 LEMSGLMPFLEALGFHLVGYGCTTCIGNSGPLPEDIAKAVEEGNLVVAAVLSGNRNFEGR 545
           L  +GL+  L  LGF L GYGCTTCIGN+G L  +  +A++  ++V AAVLSGNRNFE R
Sbjct: 481 LTRTGLLEPLAQLGFALAGYGCTTCIGNAGDLAPEFNEAIQLHDVVAAAVLSGNRNFEAR 540

Query: 546 INPHVKANYLASPMLVVAYALAGRMDIDFTTEPLGFDPNGKPIYLKDIWPSMEEIREAIR 605
           I+P+++AN+LASP LVVA+A+AGR +ID TTEPLG   +G+P+YL+DIWPS +E+ E ++
Sbjct: 541 IHPNIRANFLASPPLVVAFAIAGRANIDLTTEPLGTGKDGQPVYLRDIWPSSDEVAELLK 600

Query: 606 KTLDPELFKKEYSKVFEGDERWQALPAPTGELYQWDPESTYIQNPPFFEDLGER--KVED 663
             LDPE+F+  YS + +  + W  +PAP G++Y W PESTYI  PPFF+        ++D
Sbjct: 601 FALDPEVFRTLYSDLTKDLDLWNNIPAPQGQVYSW-PESTYIARPPFFDQFSPTPGSIDD 659

Query: 664 IRGARVLLVLGDSVTTDHISPAGAIPVKSPAGQYLISKGVKPEDFNSYGSRRGNHEVMMR 723
           I+GAR LLVLGDSVTTDHISPAG+   K+PAGQYLI+ GV   DFNSYGSRRGNH+VM+R
Sbjct: 660 IKGARALLVLGDSVTTDHISPAGSFGEKTPAGQYLIAHGVARPDFNSYGSRRGNHDVMIR 719

Query: 724 GTFANIRIKNLML----DG--IEGGYAKKLPEGDVDFVYNVAMRYKAEGTPLLVIAGKEY 777
           GTFAN+R+KNLML    DG  +EGG+   L +  +  VY+ A  Y   G P +V AG+EY
Sbjct: 720 GTFANVRVKNLMLPAKADGGRVEGGFT--LLDNTLSTVYDAAQAYMERGAPTIVFAGEEY 777

Query: 778 GTGSSRDWAAKGTYLLGIRAVLAESFERIHRSNLVGMGVLPLEFLPGENRETLGLTGYEV 837
           GTGSSRDWAAKGT LLG++AV+A+SFERIHRSNLVGMGVLPL+F   ++ ++LG+TG E+
Sbjct: 778 GTGSSRDWAAKGTLLLGVKAVIAKSFERIHRSNLVGMGVLPLQFKGNDSVQSLGITGNEL 837

Query: 838 YDILGL-EDLKPRKLVDIVARREDGSEVRFQAIARLDTPVEVDYYKNGGILQTVLLNML 895
           + +LG+ E LKP++ + +V    DG +     + R+DTP+EVDYYK+GGIL  VL ++L
Sbjct: 838 FAVLGVDEHLKPQQDLTLVICHPDGQKQHIPVLCRIDTPIEVDYYKHGGILPYVLRDLL 896


Lambda     K      H
   0.317    0.137    0.399 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2230
Number of extensions: 108
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 902
Length of database: 897
Length adjustment: 43
Effective length of query: 859
Effective length of database: 854
Effective search space:   733586
Effective search space used:   733586
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory