GapMind for catabolism of small carbon sources

 

Alignments for a candidate for ydiJ in Acidovorax caeni R-24608

Align D-2-hydroxyglutarate dehydrogenase (EC 1.1.99.39) (characterized)
to candidate WP_054255111.1 BN2503_RS02710 FAD-binding protein

Query= BRENDA::Q8N465
         (521 letters)



>NCBI__GCF_001298675.1:WP_054255111.1
          Length = 472

 Score =  171 bits (434), Expect = 4e-47
 Identities = 132/418 (31%), Positives = 192/418 (45%), Gaps = 22/418 (5%)

Query: 108 TSEEVSHILRHCHERNLAVNPQGGNTGMVGGSVPVFDEIILSTARMNRVLSFHSVSGILV 167
           ++++V   +R   +  + V P G  + + G  + V   I +   RMNRVLS ++    + 
Sbjct: 60  STQDVQDAVRLAAQYGVPVIPYGAGSSLEGHLLAVQGGISIDLGRMNRVLSVNADDLTVT 119

Query: 168 CQAGCVLEELSRYVEERDFIMPLDLGAKGSCHIGGNVATNAGGLRFLRYGSLHGTVLGLE 227
            Q G   + L+  +++     P+D GA  S  IGG  AT A G   +RYG++   VL LE
Sbjct: 120 VQPGITRKALNDAIKDTGLFFPIDPGADAS--IGGMAATRASGTNAVRYGTMRENVLALE 177

Query: 228 VVLADGTVLDCLTSLRKDNTGYDLKQLFIGSEGTLGIITTVSILCPPKPRAVNVAFLGCP 287
           VV A G V+   T  +K + GYDL +L +GSEGTLG+ T V++   P P AV+ A    P
Sbjct: 178 VVTASGDVIRTGTRAKKSSAGYDLTRLMVGSEGTLGLFTEVTVRLYPLPEAVSAAICSFP 237

Query: 288 GFAEVLQTFSTCKGMLGEILSAFEFMDAVCMQLVGRH--LHLASPVQESPFYVLIETSGS 345
                ++T       LG  ++  E +D   +++V  H  LHL    +E P  +L+E  GS
Sbjct: 238 SIEAAVRTVIQTI-QLGVPIARVELIDVNAVRMVNAHSKLHL----REEPL-LLMEFHGS 291

Query: 346 NAG--HDAEKLGHFLEHALGSGLVTDGTMATDQRKVKMLWALRER--ITEALSRDG-YVY 400
             G    AE +        G+        AT   +   LW  R         SR G    
Sbjct: 292 PTGVQEQAEVVQDIAREWGGNAF----EWATTPEERTRLWTARHNAYFAAVQSRPGCKAI 347

Query: 401 KYDLSLPVERLYDIVTDLRARLGPHAKHVVGYGHLGDGNLHLNVTAEAFSPSLLAALEPH 460
             D  +P+ RL D + D  A            GH+GDGN H     +  SP      E  
Sbjct: 348 STDTCVPISRLADCLLDSVAEADASGIPYFLVGHVGDGNFHFGYLIDPDSPDERTRAEQL 407

Query: 461 VYEWTA---GQQGSVSAEHGVGFRKRDVLGYSKPPGALQLMQQLKALLDPKGILNPYK 515
            ++  A     QG+ + EHGVG  K D L      GA+ +M+ +K  LDP+ ILNP K
Sbjct: 408 NHQLVARALRMQGTCTGEHGVGIHKMDFLQEEAGEGAVAMMRAIKQALDPQNILNPGK 465


Lambda     K      H
   0.321    0.139    0.426 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 594
Number of extensions: 31
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 521
Length of database: 472
Length adjustment: 34
Effective length of query: 487
Effective length of database: 438
Effective search space:   213306
Effective search space used:   213306
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory