Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate WP_061938946.1 CPter91_RS07480 sugar ABC transporter ATP-binding protein
Query= TCDB::B8H229 (515 letters) >NCBI__GCF_001584185.1:WP_061938946.1 Length = 515 Score = 416 bits (1068), Expect = e-120 Identities = 233/510 (45%), Positives = 334/510 (65%), Gaps = 16/510 (3%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAG-TVT 61 +L++ +SK+F G+R L +VDL V GEVHAL+GENGAGKSTL+K+LS AHAADAG + Sbjct: 10 ILEMRAISKTFSGLRVLKEVDLTVYAGEVHALMGENGAGKSTLMKVLSGAHAADAGGEIR 69 Query: 62 FAGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRADA 121 G+ + P ++LG+A IYQE +L P LSVAEN+YLGRE +R VD + A Sbjct: 70 IDGKAV-ANYGPRAAKELGVAVIYQELSLCPNLSVAENIYLGRELKRGWTVDRKAMEAGC 128 Query: 122 QALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHA 181 +L LG P V L++AE+Q+VEIA+A+ +AR+++MDEPT LS RE DRL A Sbjct: 129 VDVLVRLGADFGPQTKVSSLSIAERQLVEIARAIHAHARILVMDEPTTPLSSRETDRLFA 188 Query: 182 IIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHV 241 +I L+ ++++Y+SHR+ E+ + DR +V+RDG+ V + AD+ +V++MVGR + Sbjct: 189 LIRQLRQEGLAIVYISHRMAEIYELSDRVSVLRDGKHVGMLERADLSAEALVKMMVGRDL 248 Query: 242 EFERRKRRRP--PGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRT 299 +K P PG VV++V + G +R SF GE++G+AGLVGAGRT Sbjct: 249 SGFYKKEHAPYDPGNVVMRVRDMADG-------GRVRGCSFDLHAGEVLGIAGLVGAGRT 301 Query: 300 DLARLIFGADPIAAGRVLVDDKPLR-LRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNL 358 +LARLIFGAD +G + V K + LR P DAI+AG++ + EDRK QG FLD S+R N+ Sbjct: 302 ELARLIFGADARISGTLEVAGKAVASLRGPTDAIRAGVVYLTEDRKAQGLFLDMSVRDNI 361 Query: 359 SLPSLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMA 418 ++ + S G +D R E + L I++A +G LSGGNQQKVLL R + Sbjct: 362 NVCACVPDSRYGGVLDRRRGARRSEEAIKSLSIRVASGNVNVGALSGGNQQKVLLARLLE 421 Query: 419 LTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREG 478 + P VLI+DEPTRG+DIG+K+E++++++DLA GV VVVISSEL E++ SDR++V REG Sbjct: 422 IKPHVLILDEPTRGVDIGSKSEIYRIINDLAKAGVGVVVISSELPEIVGTSDRVLVMREG 481 Query: 479 VIVADLDAQTA---TEEGLMAYMATGTDRV 505 +VA+L + ++E ++ +ATG +V Sbjct: 482 ELVAELGGHSGRDISQENIIE-LATGAQQV 510 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 742 Number of extensions: 36 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 515 Length adjustment: 35 Effective length of query: 480 Effective length of database: 480 Effective search space: 230400 Effective search space used: 230400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory