Align Alpha-ketoglutaric semialdehyde dehydrogenase 2; alphaKGSA dehydrogenase 2; 2,5-dioxovalerate dehydrogenase 2; KGSADH-II; EC 1.2.1.26 (characterized)
to candidate WP_061936832.1 CPter91_RS03175 aldehyde dehydrogenase (NADP(+))
Query= SwissProt::Q08IC0 (525 letters) >NCBI__GCF_001584185.1:WP_061936832.1 Length = 524 Score = 607 bits (1565), Expect = e-178 Identities = 322/525 (61%), Positives = 381/525 (72%), Gaps = 2/525 (0%) Query: 1 MQLTGEMLIGAEAVAGSAGTLRAFDPSKGEPIDAPVFGVAAQADVERACELARDAFDAYR 60 M ++G+ +IG+ +AFD +G+ I+ P F A D+ERAC LA+ AFD YR Sbjct: 1 MPISGQSIIGSSQAHSQGAVFQAFDTVQGKQIE-PDFHSAEPQDIERACALAQTAFDLYR 59 Query: 61 AQPLAARAAFLEAIADEIVALGDALIERAHAETGLPVARLQGERGRTVGQLRLFARVVRD 120 A ARA FLE IA +I+ +GD LI RA AE+GLP ARL+GERGRTVGQLRLFA V+R+ Sbjct: 60 ATGQEARAVFLETIAQQILDIGDELILRAMAESGLPRARLEGERGRTVGQLRLFAAVLRE 119 Query: 121 GRFLAASIDPAQPARTPLPRSDLRLQKVGLGPVVVFGASNFPLAFSVAGGDTASALAAGC 180 G + A IDP P R PLPR DLRL+ + +GPV VFGASNFPLAFSVAGGDTA+ALAAGC Sbjct: 120 GSWNDARIDPVLPERLPLPRVDLRLRNIAIGPVAVFGASNFPLAFSVAGGDTAAALAAGC 179 Query: 181 PVIVKAHEAHLGTSELVGRAIRAAVAKTGMPAGVFSLLVGPGRVIGGALVSHPAVQAVGF 240 PV+VKAH AH GTSELVG A++ A+A +P GVFSLL G G +G ALV +P +QAVGF Sbjct: 180 PVVVKAHPAHPGTSELVGHAVQKAIAACNLPEGVFSLLTGIGNALGTALVQNPRIQAVGF 239 Query: 241 TGSRQGGMALVQIANARPQPIPVYAEMSSINPVVLFPAALAARGDAIATGFVDSLTLGVG 300 TGSRQGG+AL+Q+A ARPQPIPVYAEMSSINPV L PAALAAR +AIA GF DS+TLG G Sbjct: 240 TGSRQGGLALMQVAAARPQPIPVYAEMSSINPVYLLPAALAARAEAIAKGFADSVTLGAG 299 Query: 301 QFCTNPGLVLAIDGPDLDRFETVAAQALAKKPAGVMLTQGIADAYRNGRGKLAELPGVRE 360 QFCTNPGLVL + G D DRF +A L ++ A MLT GI AY+ G LA VR+ Sbjct: 300 QFCTNPGLVLGLAGADFDRFAQLAGAELMQRSAAAMLTTGIHAAYKQGVATLAAQDDVRQ 359 Query: 361 IGAGEAAQTDCQAGGALYEVGAQAFLAEPAFSHEVFGPASLIVRCRDLDEVARVLEALEG 420 + G AA +A AL+ AFLA P S E+FGP SL+V C + E+ +V E LEG Sbjct: 360 LARGVAAD-GYRAVPALFVTSGAAFLANPLLSAEIFGPVSLLVACANEAELLQVSEQLEG 418 Query: 421 QLTATLQMDADDKPLARRLLPVLERKAGRLLVNGYPTGVEVCDAMVHGGPFPATSNPAVT 480 QLT TLQMD DDK L R LLPVLERKAGR+L NG+PTGVEV AMVHGGPFPATS+ T Sbjct: 419 QLTVTLQMDDDDKALVRSLLPVLERKAGRILANGFPTGVEVSHAMVHGGPFPATSDSRST 478 Query: 481 SVGATAIERFLRPVCYQDFPDDLLPEGLQESNPLAIPRLRDGKAE 525 SVG+ AI RFLRPV YQ+ DLLP LQ++NPLAI + RDG+ E Sbjct: 479 SVGSAAIYRFLRPVSYQNLAQDLLPAALQDANPLAIWQRRDGRLE 523 Lambda K H 0.320 0.137 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 889 Number of extensions: 42 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 525 Length of database: 524 Length adjustment: 35 Effective length of query: 490 Effective length of database: 489 Effective search space: 239610 Effective search space used: 239610 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory