GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gltP in Photobacterium jeanii R-40508

Align Sodium:dicarboxylate symporter (characterized, see rationale)
to candidate WP_068330987.1 A3K86_RS11220 dicarboxylate/amino acid:cation symporter

Query= uniprot:A1S570
         (437 letters)



>NCBI__GCF_001650345.1:WP_068330987.1
          Length = 424

 Score =  336 bits (861), Expect = 9e-97
 Identities = 176/407 (43%), Positives = 259/407 (63%), Gaps = 5/407 (1%)

Query: 11  LTGKILIGMGAGILIGLLLRNFFGGSEWVQDYITEGFFHVIGTIFINSLKMLVVPLVFIS 70
           L+GKI  G+ AG++IG  ++  F G   +  Y+  G     G +F++ +K+LVVPLV++S
Sbjct: 5   LSGKIFAGLFAGLIIGTAIQYLFNGVTLMDTYVL-GLAEGAGGMFVSLIKLLVVPLVYVS 63

Query: 71  LVCGTCSLSEPSKLGRLGGKTLAFYLFTTAIALVVAISAAVLVQPG-NASLA---SESMQ 126
           +VCG   L + +  GRLGGKT   Y+  T IA+  A++  ++ QPG  A+LA   SE+++
Sbjct: 64  IVCGIVELKDITAFGRLGGKTFGLYIINTIIAIAAALTIGMIFQPGAGANLAGSVSEAVE 123

Query: 127 YSAKEAPSLADVLINIVPSNPMKALSEGNMLQIIIFAVIFGFAISHIGERGRRVAALFDD 186
            +  E P +  +++NIVPSNP +A + G+MLQII  A++ G AI  +  RG      F  
Sbjct: 124 LTTTETPDIFSLIVNIVPSNPFQAFANGDMLQIIFMAILTGLAIQALDTRGGPAIKTFKM 183

Query: 187 LNEVIMRVVTLIMQLAPYGVFALMGKLALTLGMETLESVIKYFMLVLVVLLFHGFVVYPT 246
            NE++M+++ L+M LAPYGVFALM +L  TL   TL SV  Y  LV+ +L+F  F  YP 
Sbjct: 184 ANEIMMKLIGLVMSLAPYGVFALMIQLGATLDANTLMSVAGYVGLVVAMLVFWIFFFYPM 243

Query: 247 LLKLFSGLSPLMFIRKMRDVQLFAFSTASSNATLPVTMEASEHRLGADNKVASFTLPLGA 306
           ++ L +G+ P  F+R +R+  LF+ STASSNAT+PVTM     ++G    VA F +PLGA
Sbjct: 244 MVGLLTGIKPSTFLRSIREQILFSLSTASSNATIPVTMRTLTDKIGVSKSVAGFGVPLGA 303

Query: 307 TINMDGTAIMQGVATVFIAQVFGIDLTITDYAMVVMTATLASIGTAGVPGVGLVMLAMVL 366
           T+NM G +I   +AT+F+A  FG  +   D   + +T  L SIG  GVPG G+VM+ ++L
Sbjct: 304 TMNMSGVSIYIALATIFVANAFGQPINSADVFTLGLTILLLSIGAGGVPGGGVVMVGVLL 363

Query: 367 NQVGLPVEGIALILGVDRMLDMVRTAVNVTGDTVATVVIAKSEGALN 413
           +Q+GLP EG+A+I  VDR+ DM  T+ NV GDT    ++AKSE  ++
Sbjct: 364 HQLGLPPEGLAIIAAVDRINDMFCTSSNVVGDTAVNTIVAKSENEID 410


Lambda     K      H
   0.325    0.139    0.388 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 416
Number of extensions: 16
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 437
Length of database: 424
Length adjustment: 32
Effective length of query: 405
Effective length of database: 392
Effective search space:   158760
Effective search space used:   158760
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory