Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate WP_068107305.1 I601_RS05735 NAD-dependent succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >NCBI__GCF_001653335.1:WP_068107305.1 Length = 492 Score = 338 bits (866), Expect = 3e-97 Identities = 186/470 (39%), Positives = 267/470 (56%), Gaps = 1/470 (0%) Query: 10 QLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHE 69 +LL+ G W DA G T DV +PA G + +VA A + D AL AA + +W E Sbjct: 20 RLLVGGRWRDAEGGATFDVHDPADGSVLTQVADASVGDAVEALDAAVAAQASWAATAPRE 79 Query: 70 RAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIV 129 R +R+A ++ RAD +A+LM+ E GK L EAR EV + W+A+E R++GR + Sbjct: 80 RGEVLRRAFEMIGRRADDLARLMSLEMGKTLQEARGEVAYGNEFFRWYAEEAVRIHGRWM 139 Query: 130 PPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAA 189 G++ +K+PVGP TPWNFP+ RK+ A+A GC+ +VK +TP + A Sbjct: 140 QAPAGGSRLLTIKKPVGPCFFVTPWNFPLAMGTRKIGPAVAAGCTMVVKPAAQTPLTMLA 199 Query: 190 LLRAFVDAGVPAGVIGLVYGDPA-EISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMK 248 L +AG+P GV+ ++ A +IS L +RKV+FTGST VG+ L + ++ Sbjct: 200 LAAILAEAGLPDGVLNVLPSTRAKDISKQLQADDRLRKVSFTGSTAVGRTLVRQSADQLQ 259 Query: 249 RATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALV 308 R +MELGG+AP +V EDADV AV A AK RN G+ C + RFLVH + F L Sbjct: 260 RLSMELGGNAPFLVFEDADVDAAVDGAMLAKMRNMGEACTAANRFLVHEDVAASFAEKLA 319 Query: 309 KHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAP 368 L++G G ++G +G L + + +++ ++ +A + GA + GGER +G F+ P Sbjct: 320 ARMGALRLGRGQDDGVDVGPLIDEAAVDSVSRLVADAVEDGARVVVGGERPEGQGWFYPP 379 Query: 369 TVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLT 428 TV+ +VP + + E FGPVA I F EEA+A AN +GLA Y +TR A + Sbjct: 380 TVLVDVPAGSAINAEEVFGPVAPITTFRTEEEAVARANDTEYGLASYVYTRDLARTIRVA 439 Query: 429 QRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVTV 478 + LE GM+ IN P PFGG+K SG+G EGG E +E YL T V + Sbjct: 440 EALEFGMVGINAGLISNPAAPFGGMKASGFGREGGFEGIEEYLETTYVAL 489 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 647 Number of extensions: 31 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 492 Length adjustment: 34 Effective length of query: 447 Effective length of database: 458 Effective search space: 204726 Effective search space used: 204726 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory