GapMind for catabolism of small carbon sources

 

Alignments for a candidate for davT in Pandoraea thiooxydans ATSB16

Align 5-aminovalerate transaminase (EC 2.6.1.48) (characterized)
to candidate WP_047216038.1 PATSB16_RS01020 acetylornithine transaminase

Query= reanno::pseudo3_N2E3:AO353_11510
         (425 letters)



>NCBI__GCF_001931675.1:WP_047216038.1
          Length = 399

 Score =  167 bits (422), Expect = 7e-46
 Identities = 135/410 (32%), Positives = 198/410 (48%), Gaps = 49/410 (11%)

Query: 30  HAKNSTVTDVEGREFIDFAGGIAVLNTGHLHPKVIAAVTEQLNKLTHTCFQVLAYEPYVE 89
           H K S + D  G+ ++DF  G AV   GH +  +I A+TEQ  KL +        EP   
Sbjct: 24  HGKGSWIFDHTGKRYLDFIQGWAVNCLGHCNEGMIRALTEQAGKLINPS-PAYYNEPMAR 82

Query: 90  LCEKINAKVPGDFAKKTLLVTTGSEAVENSIKIAR---------AATGRAGVIAFTGAYH 140
           L   +      D   K     +G+EA E +IK+AR         A   R  +I F  ++H
Sbjct: 83  LAGLLTKNSCFD---KVFFTNSGAEANEGAIKLARKWGQKHPNAAGGARFEIITFDHSFH 139

Query: 141 GRTMMTLGLTGKVVPYSAGMGLMPGG--IFRALYPNELHGVSIDDSIASIERIFKNDAEP 198
           GRT+ T+  +GK           PG   IF    P       ++D IAS+E++   D   
Sbjct: 140 GRTLATMSASGK-----------PGWDKIFAPQVPG-FPKAELND-IASVEKLIGPDT-- 184

Query: 199 RDIAAIIIEPVQGEGGFYVAPKEFMKRLRALCDQHGILLIADEVQTGAGRTGTFFAMEQM 258
               A+++EPVQGEGG   A +EFM +LR L  +H +LLI DEVQTG GRTG  FA E  
Sbjct: 185 ---VAVMLEPVQGEGGVIPATREFMLQLRELTHRHNLLLIVDEVQTGCGRTGKLFAYELS 241

Query: 259 GVAADLTTFAKSIAGGFPLAGVCGKAEYMDAIAPGGLGGTYAGSPIACAAALAVMEVFEE 318
           G+  D+ T  K I GG PLA +   A  +     G  GGTY G+P+  A  ++V+E    
Sbjct: 242 GITPDIMTLGKGIGGGVPLAALLSTAA-VAVFEAGDQGGTYNGNPLMTAVGISVIEQLTA 300

Query: 319 EHLLDRCKAVGERLVTGLKAIQAKYPVIGEVRALGAMIAVELFENGDSHKPNAAAVAKVV 378
              L+    +G  L   L A+   Y   GE R  G + A+ L   G    P      ++V
Sbjct: 301 PGFLENVTQLGNYLREQLLALCDTYGFEGE-RGEGLLRALLL---GKDIGP------QIV 350

Query: 379 AKARD---KGLILLSCGTYGNVLRVLVPLTAPDEQLDKGLAIMEECFSEL 425
            KAR+    GL++ +     N+LR +  L    E++D+ +A+++   +++
Sbjct: 351 EKARNLSPDGLLVNAARP--NLLRFMPALNVTREEIDQMIAMLKTVLAQV 398


Lambda     K      H
   0.320    0.137    0.395 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 435
Number of extensions: 35
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 399
Length adjustment: 31
Effective length of query: 394
Effective length of database: 368
Effective search space:   144992
Effective search space used:   144992
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory