GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lysN in Pandoraea thiooxydans ATSB16

Align 2-aminoadipate transaminase (EC 2.6.1.39) (characterized)
to candidate WP_047216038.1 PATSB16_RS01020 acetylornithine transaminase

Query= reanno::Putida:PP_4108
         (416 letters)



>NCBI__GCF_001931675.1:WP_047216038.1
          Length = 399

 Score =  177 bits (449), Expect = 5e-49
 Identities = 130/413 (31%), Positives = 206/413 (49%), Gaps = 53/413 (12%)

Query: 19  SHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHY--AFNAAPHGP 76
           +HG+ + ++D  GKRY+DF+ G  V  LGHCN  ++ A+  QA +L +   A+   P   
Sbjct: 23  THGKGSWIFDHTGKRYLDFIQGWAVNCLGHCNEGMIRALTEQAGKLINPSPAYYNEPMAR 82

Query: 77  YLALMEQLSQFVPVSYPLAGMLTNSGAEAAENALKVAR--------GATGKR-AIIAFDG 127
              L+ + S F  V +      TNSGAEA E A+K+AR         A G R  II FD 
Sbjct: 83  LAGLLTKNSCFDKVFF------TNSGAEANEGAIKLARKWGQKHPNAAGGARFEIITFDH 136

Query: 128 GFHGRTLATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVELA 187
            FHGRTLAT++ +GK    K    ++PG      +P A+           ++ + SVE  
Sbjct: 137 SFHGRTLATMSASGKPGWDKIFAPQVPG------FPKAE-----------LNDIASVEKL 179

Query: 188 V-EDVAAFIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAFP 246
           +  D  A + EPVQGEGG +     F   LR       +L+I+DE+Q+G GRTG+ FA+ 
Sbjct: 180 IGPDTVAVMLEPVQGEGGVIPATREFMLQLRELTHRHNLLLIVDEVQTGCGRTGKLFAYE 239

Query: 247 RLGIEPDLLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLAQM 306
             GI PD++ L K I GG+PL A++     +A    G  GGTY+GNP+  A  ++ + Q+
Sbjct: 240 LSGITPDIMTLGKGIGGGVPLAALLS-TAAVAVFEAGDQGGTYNGNPLMTAVGISVIEQL 298

Query: 307 TD----ENLATWGERQEQAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANADGSPAPA 362
           T     EN+   G    + +++  + +   G         G G +R +      G     
Sbjct: 299 TAPGFLENVTQLGNYLREQLLALCDTYGFEG-------ERGEGLLRALLL----GKDIGP 347

Query: 363 QLAKVMEAARARGLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCLAEL 415
           Q+ +        GLL+  +    +++R +  L +  E +++ + +L+  LA++
Sbjct: 348 QIVEKARNLSPDGLLV--NAARPNLLRFMPALNVTREEIDQMIAMLKTVLAQV 398


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 409
Number of extensions: 22
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 399
Length adjustment: 31
Effective length of query: 385
Effective length of database: 368
Effective search space:   141680
Effective search space used:   141680
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory