Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate WP_054654462.1 CES79_RS07305 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >NCBI__GCF_002217945.1:WP_054654462.1 Length = 596 Score = 304 bits (778), Expect = 8e-87 Identities = 186/545 (34%), Positives = 291/545 (53%), Gaps = 15/545 (2%) Query: 22 RDVIYHRGWLKNQGYPHDLFDGRPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFP 81 R ++Y G +KN P D+ +P I I N++ ++ P + HLRELA+ K + +AGG P Sbjct: 31 RSLLYATGRVKN---PEDM--KKPFIAICNSYIEIIPGHVHLRELADIAKKEIRKAGGIP 85 Query: 82 LEVPVFSASEN-TFRPTAMMY----RNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLM 136 E + M Y R + A + E I DG + + CDK TP +LM Sbjct: 86 FEFNTIGVDDGIAMGHIGMRYSLPSREIIADSAETVINAHWFDGVLYMPNCDKITPGMLM 145 Query: 137 GAASCDLPSIVVTGGPMLNGYFRGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRS 196 + ++P V+GGPM G + + + +++ K G+MT+ +F+E E + + Sbjct: 146 ASLRTNVPCTFVSGGPMKAGVDPNGKAANLSSVFEAVGAFKDGKMTKEDFMELERNACPT 205 Query: 197 SGTCNTMGTASTMASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSE 256 G+C M TA++M S+ EALG+AL N + +R+ + + RR++ VK +L+P + Sbjct: 206 CGSCAGMYTANSMNSLMEALGVALPYNGTALAISDQRRDLVRQAARRVMANVKANLRPRD 265 Query: 257 IMTKQAFENAIRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSG 316 I+TK A ++A + A+GGSTN V+H LAIA GID S D + + P + + PS Sbjct: 266 IITKDALDDAFALDMAMGGSTNTVLHGLAIAHEAGIDYSEKDINVIAKRTPHLAKIAPSS 325 Query: 317 KYLMEEFFYAGGLPVVLKRLGEAGLLHKDALTVSGETVWDEVKDVVNWNEDVILPAEKAL 376 + ME+ AGG+P ++ L E G+ H D +TV+G+T+ + VK N ++I P + Sbjct: 326 SWNMEDVHAAGGIPAIMNELIEKGVFHPDRMTVTGKTIRENVKGAHTLNPEIIRPLDNPY 385 Query: 377 TSSGGIVVLRGNLAPKGAVLKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENC 436 + GG+ VL GN+A GAV+K + P + G+AV F+ DD I D+ + Sbjct: 386 SEEGGLSVLYGNIAKDGAVIKVAGVDPDIHKFVGKAVCFDSHDDAVEGI--DSGKVKAGD 443 Query: 437 IMVMKNCGPKGYPGMAEVGNMGLPPKVLKKGILDMVR-ISDARMSGTAYGTVVLHTSPEA 495 ++V++ GPKG PGM E+ N ++ +G+ V I+D R SG +G H SPEA Sbjct: 444 VVVIRYEGPKGGPGMPEMLNP--TSDIIGRGLGKTVALITDGRFSGATHGICAGHISPEA 501 Query: 496 AVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARRLAEWQPNHDLPTSGYAFLHQQHVE 555 A GG +A+++NGD I +D+ NR L +S E A R +P GY +Q V Sbjct: 502 ASGGEIALIQNGDQITIDLINRTLDAAVSQAEFAERRKSLKPFKPKVRFGYLARYQALVT 561 Query: 556 GADTG 560 A+TG Sbjct: 562 SANTG 566 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 895 Number of extensions: 50 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 596 Length adjustment: 37 Effective length of query: 542 Effective length of database: 559 Effective search space: 302978 Effective search space used: 302978 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory