GapMind for catabolism of small carbon sources

 

Alignments for a candidate for deoK in Ochrobactrum thiophenivorans DSM 7216

Align deoxyribokinase monomer (EC 2.7.1.229) (characterized)
to candidate WP_094506690.1 CEV31_RS08740 ribokinase

Query= metacyc::MONOMER-20827
         (306 letters)



>NCBI__GCF_002252445.1:WP_094506690.1
          Length = 312

 Score =  355 bits (911), Expect = e-103
 Identities = 171/299 (57%), Positives = 230/299 (76%)

Query: 3   IAVIGSNMVDLITYTNQMPKEGETLEAPAFKIGCGGKGANQAVAAAKLNSKVLMLTKVGD 62
           I V+GSNMVDLITY N+MP  GETLEAP F+IGCGGKGANQAVAAA+L + V+M+T+VGD
Sbjct: 5   IGVVGSNMVDLITYVNRMPGPGETLEAPTFEIGCGGKGANQAVAAARLGADVMMVTRVGD 64

Query: 63  DIFADNTIRNLESWGINTTYVEKVPCTSSGVAPIFVNANSSNSILIIKGANKFLSPEDID 122
           D+FADNTIRNL ++G++T +V K+   SSGVAPIFV  +  NSILI+KGAN  L P ++D
Sbjct: 65  DVFADNTIRNLNNFGVDTRHVVKISGKSSGVAPIFVEPSGENSILIVKGANADLLPAEVD 124

Query: 123 RAAEDLKKCQLIVLQLEVQLETVYHAIEFGKKHGIEVLLNPAPALRELDMSYACKCDFFV 182
           +A+EDLK C LI++Q+EV +ETVYH I F  ++GIE +LNPAPA  +LD     +  F V
Sbjct: 125 KASEDLKTCGLILMQMEVPVETVYHTISFAAENGIETILNPAPAAADLDPERIRQVTFLV 184

Query: 183 PNETELEILTGMPVDTYDHIRAAARSLVDKGLNNIIVTMGEKGALWMTRDQEVHVPAFRV 242
           PNE+EL +L+G+P DT D I  AARSL+++G+  +IVT+G +GA  +T ++ V++P  +V
Sbjct: 185 PNESELALLSGLPTDTNDEIVIAARSLIERGIRTVIVTLGGRGARMITANEIVNIPPVKV 244

Query: 243 NAVDTSGAGDAFIGCFAHYYVQSGDVEAAMKKAVLFAAFSVTGKGTQSSYPSIEQFNEY 301
              DT+GAGDAFIG FA +Y ++G+VEA++KKA L+AA S+T  GTQ +Y S E+F  +
Sbjct: 245 TPKDTTGAGDAFIGSFARFYAETGEVEASLKKAALYAAHSITRPGTQKAYASAEEFETF 303


Lambda     K      H
   0.318    0.134    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 303
Number of extensions: 8
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 306
Length of database: 312
Length adjustment: 27
Effective length of query: 279
Effective length of database: 285
Effective search space:    79515
Effective search space used:    79515
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 48 (23.1 bits)

Align candidate WP_094506690.1 CEV31_RS08740 (ribokinase)
to HMM TIGR02152 (rbsK: ribokinase (EC 2.7.1.15))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR02152.hmm
# target sequence database:        /tmp/gapView.539909.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR02152  [M=298]
Accession:   TIGR02152
Description: D_ribokin_bact: ribokinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                             Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                             -----------
   3.6e-105  337.5   1.2   4.1e-105  337.3   1.2    1.0  1  NCBI__GCF_002252445.1:WP_094506690.1  


Domain annotation for each sequence (and alignments):
>> NCBI__GCF_002252445.1:WP_094506690.1  
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  337.3   1.2  4.1e-105  4.1e-105       1     297 [.       5     301 ..       5     302 .. 0.99

  Alignments for each domain:
  == domain 1  score: 337.3 bits;  conditional E-value: 4.1e-105
                             TIGR02152   1 ivvvGSinvDlvlrvkrlpkpGetvkaeefkiaaGGKGANQAvaaarlgaevsmigkvGkDefgeellenlkk 73 
                                           i vvGS +vDl+++v+r+p pGet++a +f+i++GGKGANQAvaaarlga+v m+++vG+D f++++++nl++
  NCBI__GCF_002252445.1:WP_094506690.1   5 IGVVGSNMVDLITYVNRMPGPGETLEAPTFEIGCGGKGANQAVAAARLGADVMMVTRVGDDVFADNTIRNLNN 77 
                                           679********************************************************************** PP

                             TIGR02152  74 egidteyvkkvkktstGvAlilvdeegeNsIvvvaGaneeltpedvkaaeekikesdlvllQlEipletveea 146
                                            g+dt +v k++ +s+GvA i+v+ +geNsI++v+Gan++l p++v++a+e++k++ l+l+Q+E+p+etv++ 
  NCBI__GCF_002252445.1:WP_094506690.1  78 FGVDTRHVVKISGKSSGVAPIFVEPSGENSILIVKGANADLLPAEVDKASEDLKTCGLILMQMEVPVETVYHT 150
                                           ************************************************************************* PP

                             TIGR02152 147 lkiakkagvkvllnPAPaekkldeellslvdiivpNetEaeiLtgievedledaekaaekllekgvkaviitl 219
                                           +++a ++g++++lnPAPa+++ld e +++v+++vpNe+E+++L+g  +++ +++  aa+ l e+g+++vi+tl
  NCBI__GCF_002252445.1:WP_094506690.1 151 ISFAAENGIETILNPAPAAADLDPERIRQVTFLVPNESELALLSGLPTDTNDEIVIAARSLIERGIRTVIVTL 223
                                           ************************************************************************* PP

                             TIGR02152 220 GskGallvskdekklipalkvkavDttaAGDtFigalavaLaegksledavrfanaaaalsVtrkGaqssiPt 292
                                           G +Ga +++++e   ip++kv+  Dtt+AGD+Fig++a   ae+ ++e+++++a+ +aa s+tr G+q+++ +
  NCBI__GCF_002252445.1:WP_094506690.1 224 GGRGARMITANEIVNIPPVKVTPKDTTGAGDAFIGSFARFYAETGEVEASLKKAALYAAHSITRPGTQKAYAS 296
                                           ************************************************************************* PP

                             TIGR02152 293 keeve 297
                                           +ee+e
  NCBI__GCF_002252445.1:WP_094506690.1 297 AEEFE 301
                                           99986 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (298 nodes)
Target sequences:                          1  (312 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.00u 0.00s 00:00:00.00 Elapsed: 00:00:00.01
# Mc/sec: 8.54
//
[ok]

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory