GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gntB in Ochrobactrum thiophenivorans DSM 7216

Align TRAP-type large permease component (characterized, see rationale)
to candidate WP_094509141.1 CEV31_RS17950 TRAP transporter large permease

Query= uniprot:Q930R2
         (425 letters)



>NCBI__GCF_002252445.1:WP_094509141.1
          Length = 426

 Score =  283 bits (723), Expect = 9e-81
 Identities = 148/413 (35%), Positives = 243/413 (58%)

Query: 4   VVFIVSLLGAMAIGVPVAFSLMFCGVVLMWYMGMFNTQIIAQNMIAGADTFTLLAIPFFI 63
           +  + +L+   A+ VPVA ++    +  + +       ++ Q M    D+F LLAIPFFI
Sbjct: 3   IALVSALMILFALSVPVAVAIAMSAIFSISFFSNLPLLVVPQKMFNALDSFPLLAIPFFI 62

Query: 64  LAGELMNAGGLSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAILI 123
           LAG LM+ GG+SRR++DFA + VG ++GGL    ++  +I +SISGS+ A T A+ AILI
Sbjct: 63  LAGNLMSHGGVSRRLVDFAKSMVGGVQGGLAASCVLTCMIFSSISGSSVATTFAVGAILI 122

Query: 124 PMMAKAGYNVPRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMGI 183
           P M + GY  P +  + A    +  ++PPS+  I++ V+   S+TQ+F+AGI PGL++  
Sbjct: 123 PAMVRHGYPTPVAGTIQATSAELGVILPPSIPMILYAVSTETSVTQIFIAGIGPGLLIAG 182

Query: 184 ALVATWLLVVRKDDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPTEAAVV 243
           AL+    +  R            K  + +   A W+L MPV+I+GGI  G+ TPTEAA +
Sbjct: 183 ALIIMTQIWCRVKGYGKNDGDDRKGFLKSAVSAFWSLMMPVVIVGGIYGGIFTPTEAAAI 242

Query: 244 AAVYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEITG 303
           A   ALF+G+ IYRELK  DLP +  Q+  +T  +M ++ AA + S+L++ + +P  +  
Sbjct: 243 AVFLALFIGLFIYRELKFTDLPKIFRQSVVSTGAVMLIIAAAGLFSFLVSMSGLPKMVGS 302

Query: 304 FISPLIDRPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFGVLFIM 363
           + S   +     +  + +++ VVG  ++ +  IL+L P+L PI    GIDPV+FG++ I+
Sbjct: 303 WASDSFESWITFLLFVNILLFVVGMFVETSAAILVLAPILAPIAILYGIDPVHFGMIMIV 362

Query: 364 NTCIGLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDI 416
           N  +G++TPP+GV L   + V ++P+ ++   +   + A IL L ++   P I
Sbjct: 363 NLAMGMITPPLGVNLFAAASVAKIPVQRMFKPLIWPVTAIILSLMVITYVPQI 415


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 451
Number of extensions: 24
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 426
Length adjustment: 32
Effective length of query: 393
Effective length of database: 394
Effective search space:   154842
Effective search space used:   154842
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory