Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate WP_094508694.1 CEV31_RS16810 ATP-grasp domain-containing protein
Query= reanno::SB2B:6937189 (673 letters) >NCBI__GCF_002252445.1:WP_094508694.1 Length = 569 Score = 392 bits (1007), Expect = e-113 Identities = 214/443 (48%), Positives = 280/443 (63%), Gaps = 11/443 (2%) Query: 4 KLLIANRGEIACRVIRTARDMGIKTVAVYSDADRDARHVALADESFYLGESAPASSYLRG 63 KLLIANRGEIA R+IR A D G+K+VA+YSDAD ++ H ADE++ LG P +YL Sbjct: 3 KLLIANRGEIAIRIIRAAADYGVKSVAIYSDADANSLHAEFADEAYGLGAGRPNDTYLNI 62 Query: 64 ELIIDIAKKCGAEAIHPGYGFLSENAAFARACEASGIAFVGPGSDAIDAMGSKSAAKLIM 123 I+DIAK+ GA+A+HPGYGFLSE A FA+A +G+ +VGP + I A+G K AA+ I Sbjct: 63 AKILDIAKRAGADAVHPGYGFLSERAEFAKAVIDAGLMWVGPSPEVITALGDKVAARRIA 122 Query: 124 EKAGVPLVPGYHGDDQSDATLLAEAKKIGYPLLIKAAYGGGGKGMRIVESESELKAAIDS 183 E+ G PLV G G +S A +A A++ G PL IKAA+GGGG+GM++ E+ DS Sbjct: 123 EQVGAPLVRGSDGPLESAAEAVAFAREAGLPLAIKAAFGGGGRGMKVAYHLEEVGELFDS 182 Query: 184 ARREAASSFGNDKLLMERYLRQPRHVEVQVFADSQGNCVYLSDRDCSIQRRHQKVVEEAP 243 A REA +FG + E++L +PRH+E QV AD+ GN V L RDCS+QRR+QK+VEEAP Sbjct: 183 AVREAVEAFGRGECYAEQFLEKPRHIEAQVIADTHGNTVVLGTRDCSLQRRNQKLVEEAP 242 Query: 244 APGLPDSLRKQMGEAAVAAAKAIDYRGAGTVEFLLDVDMSFFFMEMNTRLQVEHPVTEMV 303 AP + R ++ E+A A A Y GAGTVEFLL + + F+E+NTRLQVEHP+TE Sbjct: 243 APFITQDQRNRIHESARAICAAAGYTGAGTVEFLLSQNGTISFLEVNTRLQVEHPITEET 302 Query: 304 TGQDLVKWQLLVAAGAQLPLEQHEIQIHGHAFEVRIYAEDPNNEFLPASGKLTFLREPEP 363 TG D+V QL +A G +L + + + GHAFE RI AEDP FLP G +T R P Sbjct: 303 TGVDIVIEQLRIADGKKLSVTETP-EPRGHAFEFRINAEDPGRGFLPTPGLITRFRAPS- 360 Query: 364 SRHVRIDSGVRENDVISNYYDPMIAKLIVWDESRPRALARLTRALGDYRVGGLKHNIEFL 423 VR+D+GV I YD M+AKLIVW +R AL R RAL ++ + G+ + F Sbjct: 361 GPGVRLDTGVESGSEIPGLYDSMMAKLIVWGATREEALIRARRALAEFHIEGVASVLPFH 420 Query: 424 SNIAEHPAFAQANFSTDFIGRYG 446 + E DFIG G Sbjct: 421 RAVVE---------DKDFIGEDG 434 Score = 40.0 bits (92), Expect = 3e-07 Identities = 28/72 (38%), Positives = 39/72 (54%), Gaps = 1/72 (1%) Query: 589 SSEDKLKAPMNGTVVTHLVAAGDKVSAGQGLLVMEAMKMEYTIEAPFDGVVSEFFFAPGE 648 ++E + AP+ GT LV G VS G+ + ++EAMKME I AP G +S G+ Sbjct: 499 ATEGAVTAPIPGTFQQWLVEDGAMVSEGEIVAIIEAMKMETRIGAPKSGKIS-LRAEAGK 557 Query: 649 LVSDGTLLLALE 660 VS G L +E Sbjct: 558 SVSLGAELAIIE 569 Lambda K H 0.317 0.134 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 914 Number of extensions: 40 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 673 Length of database: 569 Length adjustment: 37 Effective length of query: 636 Effective length of database: 532 Effective search space: 338352 Effective search space used: 338352 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory