GapMind for catabolism of small carbon sources

 

Protein WP_099018084.1 in Marinicella litoralis KMM 3900

Annotation: NCBI__GCF_002591915.1:WP_099018084.1

Length: 570 amino acids

Source: GCF_002591915.1 in NCBI

Candidate for 34 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
D-mannose catabolism TM1749 med TM1749, component of Probable mannose/mannoside porter. Induced by beta-mannan (Conners et al., 2005). Regulated by mannose-responsive regulator manR (characterized) 49% 83% 272.7 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-mannose catabolism TM1750 med TM1750, component of Probable mannose/mannoside porter. Induced by beta-mannan (Conners et al., 2005). Regulated by mannose-responsive regulator manR (characterized) 53% 77% 264.6 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-cellobiose catabolism cbtD lo CbtD, component of Cellobiose and cellooligosaccharide porter (characterized) 33% 79% 175.3 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-cellobiose catabolism cbtF lo CbtF, component of Cellobiose and cellooligosaccharide porter (characterized) 35% 81% 170.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-cellobiose catabolism TM0027 lo TM0027, component of β-glucoside porter (Conners et al., 2005). Binds cellobiose, laminaribiose (Nanavati et al. 2006). Regulated by cellobiose-responsive repressor BglR (characterized) 37% 90% 155.6 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-proline catabolism proV lo Glycine betaine/proline betaine transport system ATP-binding protein ProV (characterized) 36% 56% 142.1 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-histidine catabolism PA5503 lo Methionine import ATP-binding protein MetN 2, component of L-Histidine uptake porter, MetIQN (characterized) 34% 73% 140.6 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-proline catabolism opuBA lo BusAA, component of Uptake system for glycine-betaine (high affinity) and proline (low affinity) (OpuAA-OpuABC) or BusAA-ABC of Lactococcus lactis). BusAA, the ATPase subunit, has a C-terminal tandem cystathionine β-synthase (CBS) domain which is the cytoplasmic K+ sensor for osmotic stress (osmotic strength)while the BusABC subunit has the membrane and receptor domains fused to each other (Biemans-Oldehinkel et al., 2006; Mahmood et al., 2006; Gul et al. 2012). An N-terminal amphipathic α-helix of OpuA is necessary for high activity but is not critical for biogenesis or the ionic regulation of transport (characterized) 35% 56% 140.6 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-cellobiose catabolism TM0028 lo TM0028, component of β-glucoside porter (Conners et al., 2005). Binds cellobiose, laminaribiose (Nanavati et al. 2006). Regulated by cellobiose-responsive repressor BglR (characterized) 31% 82% 139.4 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-arabinose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 35% 63% 136.7 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-fructose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 35% 63% 136.7 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
sucrose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 35% 63% 136.7 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-xylose catabolism araV lo AraV, component of Arabinose, fructose, xylose porter (characterized) 35% 63% 136.7 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-histidine catabolism hutV lo ABC transporter for L-Histidine, ATPase component (characterized) 32% 88% 129.4 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
putrescine catabolism potA lo spermidine/putrescine ABC transporter, ATP-binding protein PotA; EC 3.6.3.31 (characterized) 33% 60% 128.3 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-maltose catabolism thuK lo Trehalose/maltose import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 33% 63% 124 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
trehalose catabolism thuK lo Trehalose/maltose import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 33% 63% 124 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
xylitol catabolism Dshi_0546 lo ABC transporter for Xylitol, ATPase component (characterized) 32% 67% 124 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-arabinose catabolism xacJ lo Xylose/arabinose import ATP-binding protein XacJ; EC 7.5.2.13 (characterized, see rationale) 33% 60% 123.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
N-acetyl-D-glucosamine catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 32% 68% 120.6 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-glucosamine (chitosamine) catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 32% 68% 120.6 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-maltose catabolism malK1 lo MalK; aka Sugar ABC transporter, ATP-binding protein, component of The maltose, maltotriose, mannotetraose (MalE1)/maltose, maltotriose, trehalose (MalE2) porter (Nanavati et al., 2005). For MalG1 (823aas) and MalG2 (833aas), the C-terminal transmembrane domain with 6 putative TMSs is preceded by a single N-terminal TMS and a large (600 residue) hydrophilic region showing sequence similarity to MLP1 and 2 (9.A.14; e-12 & e-7) as well as other proteins (characterized) 31% 63% 119.8 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-cellobiose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-glucose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
lactose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-maltose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
sucrose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
trehalose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-xylose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 32% 59% 118.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-sorbitol (glucitol) catabolism mtlK lo ABC transporter for D-Sorbitol, ATPase component (characterized) 33% 65% 117.1 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-tryptophan catabolism ecfA1 lo Energy-coupling factor transporter ATP-binding protein EcfA1; Short=ECF transporter A component EcfA; EC 7.-.-.- (characterized, see rationale) 33% 82% 115.5 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
sucrose catabolism thuK lo ThuK aka RB0314 aka SMB20328, component of Trehalose/maltose/sucrose porter (trehalose inducible) (characterized) 32% 65% 115.2 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
D-maltose catabolism musK lo ABC-type maltose transporter (EC 7.5.2.1) (characterized) 31% 57% 109.8 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4
L-arabinose catabolism xylGsa lo Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale) 31% 86% 100.5 Glutathione import ATP-binding protein GsiA; EC 7.4.2.10 47% 505.4

Sequence Analysis Tools

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MNNNQLLSIEHLSIEFNTHEGVVRAVDDLSFAIKAGQTIGLVGESGSGKSVTALSVLGLI
PQPPGNITSGAINYLGDDLLKMPEKQLRQIRGNDISMVFQEPMTSLNPVFRVGYQISEVL
RLHKNLSKKQAWQKTVELMDWVGIPEPHRRARSYPHELSGGQKQRVMIAMAIACEPKLLI
CDEPTTALDVTIQQQVLELLQQLQKDLSMSMLFITHDLGVIADLADEVVVMYRSKKVEQA
ITAKIFTEAHHPYSKGLLACRPKLHDNPQRLLTVSDFMNAAGEELTPTLAQQQPQIKADK
NHHEVLLRVNELKTHFPIKGGFFGRVQSHVKAVDGVSFTVKKGETLGLVGESGCGKTTLG
RTLLKLQRATSGSVHYDGIDVFAQSPKDMRRLRSRMQIIFQDPFASLNPRMTIGQAIMEP
LNIHRPEDSKVLRWERVAELIKQVDLNPDQLNRFPHEFSGGQRQRISIARALAVDPEFIV
CDESVSALDVSVQAQVLNLLLDLQAQRDLTYIFISHDLSVVNFIADRVGVMNQGKIVELN
TAEEIYRNPQNPYTQKLLDAIPKGVPRATK

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory