Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3); L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) (characterized)
to candidate WP_099019443.1 CCS90_RS07310 aldehyde dehydrogenase family protein
Query= BRENDA::P49419 (539 letters) >NCBI__GCF_002591915.1:WP_099019443.1 Length = 505 Score = 526 bits (1356), Expect = e-154 Identities = 271/502 (53%), Positives = 345/502 (68%), Gaps = 5/502 (0%) Query: 41 WLKELGLREENEGVYNG----SWGGRGEVITTYCPANNEPIARVRQASVADYEETVKKAR 96 ++KELGL++ N G G S +I ++ PA E + +V +S ADYE V KA+ Sbjct: 3 FMKELGLKDVNSGTCTGPNEWSTDDSAGLIESHNPATGELMGKVMSSSDADYENVVNKAQ 62 Query: 97 EAWKIWADIPAPKRGEIVRQIGDALREKIQVLGSLVSLEMGKILVEGVGEVQEYVDICDY 156 E +K W +P P RGE VR +G+ALR+ LGSLV+ EMGKI EG GEVQE +D+ D+ Sbjct: 63 EVFKEWRKVPGPLRGEAVRLVGEALRKHKDALGSLVAAEMGKIKSEGDGEVQEMIDMADF 122 Query: 157 AVGLSRMIGGPILPSERSGHALIEQWNPVGLVGIITAFNFPVAVYGWNNAIAMICGNVCL 216 AVG SRM+ G + SER GH + +QW+P+G+VGII+AFNFPVAV+ WN +A ICGNV + Sbjct: 123 AVGQSRMMYGNTMHSERPGHRMYDQWHPIGVVGIISAFNFPVAVWSWNAFVAAICGNVSI 182 Query: 217 WKGAPTTSLISVAVTKIIAKVLEDNKLPGAICSLTCGGADIGTAMAKDERVNLLSFTGST 276 WK + L S+AV I + L++ P ++ D+RVNL+SFTGST Sbjct: 183 WKPSQKVPLCSIAVQNICNEALKEAGFPPIFLLFNDNSNELAKKFVDDKRVNLVSFTGST 242 Query: 277 QVGKQVGLMVQERFGRSLLELGGNNAIIAFEDADLSLVVPSALFAAVGTAGQRCTTARRL 336 VG+QVG+ V +R GRSLLELGGNNA+I + ADL L VP+ +F AVGTAGQRCTT RRL Sbjct: 243 NVGRQVGVQVAKRMGRSLLELGGNNALIVDKTADLKLAVPAIVFGAVGTAGQRCTTTRRL 302 Query: 337 FIHESIHDEVVNRLKKAYAQIRVGNPWDPNVLYGPLHTKQAVSMFLGAVEEAKKEGGTVV 396 F+HE I DE++ + KAY Q+ +GNP D + L GPL + +V M+L AVE+AK GG V+ Sbjct: 303 FVHEDIADELIATVVKAYKQVPIGNPLDADTLMGPLIDEPSVQMYLDAVEKAKAAGGEVL 362 Query: 397 YGGKVMDRPGNYVEPTIVTGLGHDASIAHTETFAPILYVFKFKNEEEVFAWNNEVKQGLS 456 GGK +D PG++VEP ++ GH + TETFAPILYV F + + V N+V GLS Sbjct: 363 TGGKRVDGPGHFVEPCVIKAEGH-WDVVKTETFAPILYVMTFSDLDAVIEAQNDVAHGLS 421 Query: 457 SSIFTKDLGRIFRWLGPKGSDCGIVNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWKQY 516 S+IFT DL + ++L GSDCGI NVNI TSGAEIGGAFGGEK TGGGRE+GSDAWK Y Sbjct: 422 SAIFTNDLRQAEQFLSSAGSDCGIANVNIGTSGAEIGGAFGGEKETGGGREAGSDAWKAY 481 Query: 517 MRRSTCTINYSKDLPLAQGIKF 538 MRR T TINYS +LPLAQGIKF Sbjct: 482 MRRQTNTINYSTELPLAQGIKF 503 Lambda K H 0.318 0.136 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 843 Number of extensions: 30 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 505 Length adjustment: 35 Effective length of query: 504 Effective length of database: 470 Effective search space: 236880 Effective search space used: 236880 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory