Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate WP_084200303.1 C0029_RS03565 choline dehydrogenase
Query= metacyc::MONOMER-15202 (579 letters) >NCBI__GCF_002869505.1:WP_084200303.1 Length = 536 Score = 604 bits (1558), Expect = e-177 Identities = 312/548 (56%), Positives = 387/548 (70%), Gaps = 14/548 (2%) Query: 33 THAFDYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRDNYHWIHIPVGYLYCINNPRTD 92 T +DYI++GAGTAGC+LANRLSADP +VLL+EAGG+D+Y WI+IPVGYL+ I NPRTD Sbjct: 2 TQTYDYIIIGAGTAGCVLANRLSADPETQVLLLEAGGKDDYFWINIPVGYLFTIGNPRTD 61 Query: 93 WRFRTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDDAWRWDNC 152 W F TEPD GLNGRSL Y RGK LGGCSSIN M+Y+RGQ DYD WA G+ W W + Sbjct: 62 WCFETEPDDGLNGRSLGYARGKVLGGCSSINAMVYMRGQQYDYDQWAA-AGNQGWGWKDV 120 Query: 153 LPDFMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKWQVLADFATAAVEAGVPRT 212 LP F + E + + G ++ FHG GE R+E++R+ W +L + AA E G+PR Sbjct: 121 LPVFKQSESY----QHGASE-----FHGDQGELRVEERRVSWDILDAWRDAAAETGIPRI 171 Query: 213 RDFNRGDNEGVDAFEVNQRSGWRWNASKAFLRGVEQRGNLTVWHSTQVLKLDFASGEGSE 272 ++NRGDN G F++NQR G R +A+ AFL V+ R NLT+ V L+ S + + Sbjct: 172 EEYNRGDNFGTAYFQMNQRKGQRCSAAHAFLHPVKDRPNLTIKTQAMVHGLELDSSD-DK 230 Query: 273 PRCCGVTVERA-GKKVVTTARCEVVLSAGAIGSPQLLQLSGIGPTALLAEHAIPVVADLP 331 R GV G+ + AR EV+L+AG+IGSPQLLQLSGIGP LL +H I V +L Sbjct: 231 LRATGVKARIGKGEAQIFKARKEVILAAGSIGSPQLLQLSGIGPRPLLEKHGIEVRQELI 290 Query: 332 GVGENLQDHLQIRSIYKVKGAKTLNTMANSLIGKAKIGLEYILKRSGPMSMAPSQLCIFT 391 GVGENLQDHLQIR++Y+V TLNT+ +SL GK K+GL+Y+L R+GP++M PSQL F Sbjct: 291 GVGENLQDHLQIRTVYRVSNTTTLNTLYHSLWGKLKMGLQYLLFRTGPLTMPPSQLGAFA 350 Query: 392 RSSKEYEHPNLEYHVQPLSLEAFGQPLHDFPAITASVCNLNPTSRGTVRIKSGNPRQAPA 451 +S P+LE+HVQPLSL+ FG PLH F AIT SVCNL PTSRG V I+S +P AP Sbjct: 351 KSDSNLATPDLEWHVQPLSLDKFGDPLHTFDAITPSVCNLRPTSRGHVHIRSPDPEAAPE 410 Query: 452 ISPNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSDEDLARLAGDIGT 511 I NYLSTE DR+ A + L+ TR I + A + PEE KPG +++EDLAR AGD+GT Sbjct: 411 IKLNYLSTEADRKAAVEGLKFTRRIMASDAMKPFSPEELKPGPNIETEEDLARAAGDLGT 470 Query: 512 TIFHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGNTNSPTLMIAEKA 571 TIFHPVGT KMGR DPMAVVD LRV GV GLRVVDASIMPTI SGNTN+PT+MIAE+ Sbjct: 471 TIFHPVGTCKMGR--DPMAVVDERLRVHGVAGLRVVDASIMPTIVSGNTNAPTVMIAEQG 528 Query: 572 AGWILKSQ 579 A +IL + Sbjct: 529 AAFILSEK 536 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 917 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 536 Length adjustment: 36 Effective length of query: 543 Effective length of database: 500 Effective search space: 271500 Effective search space used: 271500 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory