GapMind for catabolism of small carbon sources

 

Alignments for a candidate for rbsA in Rhodobacter johrii JA192

Align Ribose import ATP-binding protein RbsA 2, component of D-ribose porter (Nanavati et al., 2006). Induced by ribose (characterized)
to candidate WP_069330308.1 C8J29_RS17445 sugar ABC transporter ATP-binding protein

Query= TCDB::Q9X051
         (523 letters)



>NCBI__GCF_003046325.1:WP_069330308.1
          Length = 497

 Score =  344 bits (883), Expect = 4e-99
 Identities = 195/502 (38%), Positives = 316/502 (62%), Gaps = 25/502 (4%)

Query: 10  EVLLEARNITKTFPGVIAVNNVTLQIYKGEVCALVGENGAGKSTLMKILAGVYPDYEGQI 69
           + L+E RNI K F GV A++ V+L I  GE+  L GENG+GKST++K+++G+Y   EG+I
Sbjct: 3   DTLIELRNIGKRFGGVRALDGVSLAIRPGEIHCLAGENGSGKSTVIKVMSGIYTPEEGEI 62

Query: 70  FLEGKEVRFRNPREAQENGIALIPQELDLVPNLSSAENIFLSREPVNEFGVIEYQKMFEQ 129
            ++G+ V   +P  A ++G+ +I Q+  L  NL+ AEN+ L+   +     +++++    
Sbjct: 63  LIDGRPVGRLDPIRAVQHGVQVIYQDFSLFGNLTVAENLALNTYVLEGRRRMDWRRARAM 122

Query: 130 ASKLFSKLGVNIDPKTKVEDLSTSQQQMVAIAKALSLDAKIIIMDEPTSAIGKRETEQLF 189
           A ++ +++GV+IDP  +V  L TS +Q+VAIA+A+   A++IIMDEPT+A+ + E + LF
Sbjct: 123 AVEVLARIGVDIDPDAEVGTLPTSGRQVVAIARAILARARLIIMDEPTTALTRHEVDALF 182

Query: 190 NIIRSLKNEGKSVIYISHRLEEIFEIADRVVVMRDGRKVGEGPIEEFDHDKLVRLMVGRS 249
            I+R L+ +G +V+++SH++ E+ EI++R+ V R+GRKV EGP+ +FD   +   M G S
Sbjct: 183 AIVRDLQAQGIAVLFVSHKMREMLEISERLTVFRNGRKVAEGPMSDFDEAAITHAMTGLS 242

Query: 250 IDQFFIKERATITDEIFR---VEGIKLWSLDRKKL----LVDDVSFYVRKGEVLGIYGLV 302
                      +TD+ +R     G  L  L+ +KL     V D+   +R GE++GI GL+
Sbjct: 243 -----------LTDDPYRPALPPGPPL--LEVRKLSVPGSVQDIDLSLRPGEIVGISGLI 289

Query: 303 GAGRTELLEAIFGAHPGRTEGKVFIGGKEIKIHSPRDAVKNGIGLVPEDRKTAGLILQMS 362
           G+GRTEL  A+FG  PG T G + +GG+EI   S ++A+  GI  VPEDR T GL L  S
Sbjct: 290 GSGRTELARALFGMEPGMT-GTIRLGGREIHPRSVQEAIALGIAYVPEDRLTEGLFLPQS 348

Query: 363 VLHNITLPSVVMKLIVRKFGLIDSQLEKEIVRSFIEKLNIKTPSPYQIVENLSGGNQQKV 422
           +  N+ + S++ +L  R+   +D++  +E        + I  PSP   V NLSGGN Q+V
Sbjct: 349 IERNLVV-SILERL--RRGPFLDTRAVREKTLGMFRDMQIAAPSPETAVGNLSGGNAQRV 405

Query: 423 VLAKWLAIKPKVLLLDEPTRGIDVNAKSEIYKLISEMAV-SGMGVVMVSSELPEILAMSD 481
           +L +WL    +VL+L+ PT G+DV +K+ I+++I ++A   G+GV+M+S ++PE++   +
Sbjct: 406 MLGRWLLTGARVLILNGPTVGVDVGSKATIHRIIRDLAQREGLGVLMISDDVPELVTNCN 465

Query: 482 RILVMSEGRKTAEFLREEVTEE 503
           RI VM  GR  A+     +TE+
Sbjct: 466 RIHVMHRGRFVADLDGSGMTED 487


Lambda     K      H
   0.317    0.137    0.372 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 542
Number of extensions: 25
Number of successful extensions: 8
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 523
Length of database: 497
Length adjustment: 34
Effective length of query: 489
Effective length of database: 463
Effective search space:   226407
Effective search space used:   226407
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory