Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate WP_108402728.1 B9Z44_RS14150 3-hydroxyacyl-CoA dehydrogenase
Query= BRENDA::A4YDS4 (651 letters) >NCBI__GCF_003063475.1:WP_108402728.1 Length = 699 Score = 194 bits (492), Expect = 1e-53 Identities = 134/399 (33%), Positives = 204/399 (51%), Gaps = 26/399 (6%) Query: 3 VTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSLKEGVEQ 62 V VIG+G MG GIA AG V M + E L + + I+ + + G LKE Sbjct: 300 VAVIGAGTMGGGIAMNFLNAGIAVKMLETKQEALDRGVATIQKNYEDRVKKGKLKEEKAA 359 Query: 63 VLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPISE 122 + T +K +D VIEAV ED+ +K +F+ +A P A+LA+NTS+L +++ Sbjct: 360 QRMALLSTTLSYDDIKDADLVIEAVFEDMGVKEAVFKQLDAVMKPGAILASNTSTLDLNK 419 Query: 123 IASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKDVP 182 IA K PQ VVG+HFF+P +M L+E+VRGKDT+ +V+ T ++AK + K ++ Sbjct: 420 IAHFTKRPQDVVGLHFFSPANVMKLLEVVRGKDTAKDVLATAMDVAKKIKKIAVLSGVCD 479 Query: 183 GFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSVWK 242 GF NR++ + +L+++G Q VD AIE+ G+ MG F ++D G DIG+S+ K Sbjct: 480 GFIGNRMIDQYGRQAGFLLDEGCTPAQ-VD-RAIEKFGWAMGPFRMSDLAGNDIGWSIRK 537 Query: 243 AVTARGFKAFPCSSTEKLVSQGKLGVKSGSGYYQYPS------PGKFVRPTLPSTSKKLG 296 A + + L QG+ G K+G+G+Y Y P K V + + LG Sbjct: 538 RQYAENPTRRYSKTADLLCEQGRFGQKTGAGWYDYKPGKRDAIPNKDVEAMIAKHRESLG 597 Query: 297 ------------RYLISPAVNEVSYLLREGIVGK-DDAEKGCVLGLGLP---KGILSYAD 340 + L VNE +++L EGI K D + + G G P G ++YAD Sbjct: 598 IKPRKISDEEIVQRLNFALVNEAAHILEEGIASKASDIDMVYISGYGFPIFRGGPMNYAD 657 Query: 341 EIGIDVVVNTLEEMRQT--SGMDHYSPDPLLLSMVKEGK 377 E+G+ VV ++ + + P PLL + EGK Sbjct: 658 ELGLFNVVQAMQRFATNPHDDAEFWKPAPLLAKLAAEGK 696 Score = 99.4 bits (246), Expect = 5e-25 Identities = 63/200 (31%), Positives = 97/200 (48%), Gaps = 10/200 (5%) Query: 402 RVEPPLAWIVLNRPTRYNAINGDMIREINQALDSLEEREDVRVIAITGQGRVFSAGADVT 461 +V +A I LN P N + + R + + + V+ + ITG G+ FS GADV Sbjct: 6 QVHGDVAVITLNNPP-VNGMGLETRRALVAGIAQAQADAAVKAVVITGHGKAFSGGADVR 64 Query: 462 EFGSLTPVKAMIASRKFHEVFMKIQFLTKPVIAVINGLALGGGMELALSADFRVASKTAE 521 EFGS V ++ KPV+A ++ + +GGG+ELAL +RV + Sbjct: 65 EFGS----PKAFQEPNLLSVISCVENCNKPVVAAMHTVVMGGGLELALGCHYRVCAPGTS 120 Query: 522 MGQPEINLGLIPGGGGTQRLSRLSG-RKGLELVLTGRRVKAEEAYRLG----IVEFLAEP 576 + PE+ LGLIPG GGTQRL R G + ++++G +K++ L + P Sbjct: 121 ISMPEVKLGLIPGAGGTQRLPRALGVEPAMNMIVSGEAIKSDMLSMLPGQKLFDQMAMSP 180 Query: 577 EELESEVRKLANAIAEKSPL 596 + L E A +A+ PL Sbjct: 181 QSLMDEAIAYAREVADVRPL 200 Lambda K H 0.316 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 935 Number of extensions: 52 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 651 Length of database: 699 Length adjustment: 39 Effective length of query: 612 Effective length of database: 660 Effective search space: 403920 Effective search space used: 403920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory