GapMind for catabolism of small carbon sources

 

Alignments for a candidate for xylH in Rhodobacter viridis JA737

Align D-xylose ABC transporter, permease protein (characterized)
to candidate WP_110804518.1 C8J30_RS04455 sugar ABC transporter permease

Query= CharProtDB::CH_024441
         (393 letters)



>NCBI__GCF_003217355.1:WP_110804518.1
          Length = 429

 Score =  235 bits (599), Expect = 2e-66
 Identities = 143/405 (35%), Positives = 221/405 (54%), Gaps = 36/405 (8%)

Query: 25  LNLQVFVMIAAIIAIMLFFTWTTDGAYLSARNVSNLLRQTAITGILAVGMVFVIISAEID 84
           L+ ++  MI A + I L F   TDG +L+ RN+ NL  QT    I+A GMVFVI++  ID
Sbjct: 21  LDTRLLGMIGAFVVICLVFNVITDGRFLTPRNIFNLSIQTVSVAIMATGMVFVIVTRHID 80

Query: 85  LSVGSMMGLLGGVAAICDVWL-------GWPL--PLTIIVTLVLGLLLGAWNGWWVAYRK 135
           LSVG+++ +   V  +  V L       G PL  PLT++  L+ G  +GA NGW V Y++
Sbjct: 81  LSVGAVLAICSSVMGVMQVQLLPQLFGIGHPLVMPLTVLAGLLTGAAIGALNGWLVGYQR 140

Query: 136 VPSFIVTLAGMLAFRGILIGITNGTTVSPTSAAMSQIG--QSYLPASTGFIIGALGLMAF 193
           +P+FIVTL G+L +R +   +T+G TV P        G  +  + ++  + +  +  +  
Sbjct: 141 IPAFIVTLGGLLIWRNVGWYLTDGQTVGPLDQTFMLFGGVEGTVGSALSWGLAIVFSVLA 200

Query: 194 VGWQWRGRMRRQALGLQSPASTAVVGRQALTAIIVLGAIWLLN----------------- 236
           V   WR R  +           A     A +   +LG + +LN                 
Sbjct: 201 VFGLWRARQAKIHHEFPVKPLWAEGALMATSVAAILGFVAILNSYAIPVGRLKREFESRG 260

Query: 237 --------DYRGVPTPVLLLTLLLLGGMFMATRTAFGRRIYAIGGNLEAARLSGINVERT 288
                   DY G+P  VL+L ++++    +A +T  GR I+A GGN +AA LSGIN    
Sbjct: 261 EVMPEGYVDYFGLPISVLMLVVIVVVMTLVARKTRLGRYIFAAGGNPDAAELSGINTRML 320

Query: 289 KLAVFAINGLMVAIAGLILSSRLGAGSPSAGNIAELDAIAACVIGGTSLAGGVGSVAGAV 348
            + +F + G++ AI+ ++  +RL   +   G++ EL  IAA VIGGT+LAGG+G++ GAV
Sbjct: 321 TVKIFTLMGVLCAISAMVAQARLANHTNDIGSLDELRVIAAAVIGGTALAGGIGTIYGAV 380

Query: 349 MGAFIMASLDNGMSMMDVPTFWQYIVKGAILLLAVWMDSATKRRS 393
           +GA IM SL +GM+M+ V   +Q IV G +L+LAVW+D   ++R+
Sbjct: 381 LGAVIMQSLQSGMAMVGVDAPFQNIVVGGVLVLAVWIDIQYRKRT 425


Lambda     K      H
   0.325    0.138    0.415 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 415
Number of extensions: 20
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 393
Length of database: 429
Length adjustment: 31
Effective length of query: 362
Effective length of database: 398
Effective search space:   144076
Effective search space used:   144076
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory