Align periplasmic glucoside 3-dehydrogenase (lacA subunit) (EC 1.1.99.13) (characterized)
to candidate WP_079649353.1 B5X82_RS16945 GMC family oxidoreductase
Query= reanno::Pedo557:CA265_RS15345 (567 letters) >NCBI__GCF_900167915.1:WP_079649353.1 Length = 562 Score = 516 bits (1329), Expect = e-151 Identities = 266/559 (47%), Positives = 355/559 (63%), Gaps = 9/559 (1%) Query: 12 NTYDAIVIGSGISGGWAAKELTEKGLRVLMLERGMNIEHITGYETAMKNPWDFKHAG--- 68 +T+DAIV+GSGISGGWAAKELTE+G RVL++ERG + H Y K PW+F G Sbjct: 4 STFDAIVVGSGISGGWAAKELTERGARVLLIERGRMVRHGEDYPGEHKAPWEFPFRGFGD 63 Query: 69 KLTEEQKRTHPVQKRDYPYQEANEKWWVNDLECPYTEDK--RFDWYRGFHVGGKSLMWGR 126 +L E R +PVQ+R ++E + +++VND E PY + F W RG+ VGG+SLMWGR Sbjct: 64 RLLYE--RDYPVQRRGRGFEEGSVQFFVNDREHPYQVEPGTHFSWLRGYQVGGRSLMWGR 121 Query: 127 QSYRLSDHNFEDNARDGHGSDWPVRYAELSPWYDYAERFAGISGSKENWPTCPDGQFLPP 186 S+RLSD NF +N RDGHG DWP+RYA+++PWYD+ ERF G+SG++E PDG+FLPP Sbjct: 122 ASFRLSDFNFSENKRDGHGIDWPIRYADVAPWYDHVERFIGVSGAREGIDELPDGEFLPP 181 Query: 187 MDLNIVEKSVKARIEEHYKRERIMMIGRVANLTVPHKGRGNCQYRNLCSRGCPFGAYFST 246 +N +E+ K IE + R M+ R A L+ H GR C C RGC G+YFST Sbjct: 182 FAMNCIEEHAKKAIESRFPGRR-MINERTAVLSRDHNGRSACHLCGPCHRGCSTGSYFST 240 Query: 247 QSSTLPAAMATKRLTLRPYSIVNHIIYDKDTKKAKGVMVIDAETNKTMEFYAKIVFVNGS 306 QSSTLPAA AT RLT+ +IV + YD +K+ V I+++ A+++F+N S Sbjct: 241 QSSTLPAAQATGRLTIMTDTIVAGVDYDPQSKRVTAVRTINSKIGTHETIGARLIFLNAS 300 Query: 307 TLGSTFVLLNSTSEAHPNGLGNGSGQLGHNLMDHHFRCGASGEAEGFDDKYTYGRRANGI 366 TLG+ +LLNS +E+ P+GL N SG +G +MD +G GFD G R GI Sbjct: 301 TLGTIQILLNSRNESFPDGLANRSGAVGRGIMDTLKGPMITGTFAGFDQFQPVGNRPTGI 360 Query: 367 YIPRYQNI-GNDKRDYLRGFGYQGGASRANWQGDVAELSFGADLKQKMTTPGKWSMGLGG 425 YIPR++N+ G D+LRG+GYQG SRA W V S G LK ++ PG W++ LGG Sbjct: 361 YIPRFRNLAGRRDADFLRGYGYQGSGSRALWTRGVESRSIGPALKAELRKPGPWTIMLGG 420 Query: 426 FGEMLPYYENKVYIDKTKKDKWGQPVLAIDCEYKENEKKMRVDMMNDAAEMLEKAGMKNI 485 GE LP +N V +D + D+WG P L + + NE++M DM + ML AG + Sbjct: 421 MGEPLPNDDNIVRLDPARTDQWGLPQLLVSHRWTANEERMAQDMADQGEAMLRAAGAVKV 480 Query: 486 KTFDNGCYPGMAIHEMGTARMGNDPKTSVLNKWNQMHEVNNVFVTDGSCMPSIACQNPSL 545 T G HEMG ARMG+DP+ SVLN +NQ H++ N+FVTDGSCM S CQNPSL Sbjct: 481 STIREIKPGGETNHEMGGARMGHDPRESVLNGFNQAHDIPNLFVTDGSCMTSSPCQNPSL 540 Query: 546 TFMALTARACDYAVKELKK 564 T+MALTARA D+A+ +L++ Sbjct: 541 TYMALTARAADHAMTQLQQ 559 Lambda K H 0.317 0.134 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 903 Number of extensions: 37 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 567 Length of database: 562 Length adjustment: 36 Effective length of query: 531 Effective length of database: 526 Effective search space: 279306 Effective search space used: 279306 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory