GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Sphingomonas histidinilytica UM2

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; IP210; Iron-responsive protein-like; IRP-like; Major iron-containing protein; MICP; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate WP_079648606.1 B5X82_RS13120 aconitate hydratase AcnA

Query= SwissProt::P37032
         (891 letters)



>NCBI__GCF_900167915.1:WP_079648606.1
          Length = 894

 Score = 1199 bits (3102), Expect = 0.0
 Identities = 602/892 (67%), Positives = 701/892 (78%), Gaps = 4/892 (0%)

Query: 3   VGQDSLSTKSQLTVDGKTYNYYSLKEAENKHFKGINRLPYSLKVLLENLLRFEDGNTVTT 62
           VGQD+L T+S L VDGK Y YYSL +A  K    I+RLP+S+KVLLENLLRFEDG TVTT
Sbjct: 4   VGQDTLKTRSTLNVDGKHYAYYSLAKAAEK-LGDISRLPFSMKVLLENLLRFEDGTTVTT 62

Query: 63  KDIKAIADWLHNKTSQHEIAFRPTRVLMQDFTGVPAVVDLAAMRTAIVKMGGNADKISPL 122
            D++AI DW   +TS+ EI +RP RVLMQDFTGVP VVDLAAMR A+  +GG+A KI+PL
Sbjct: 63  DDVQAIVDWQKERTSEREIQYRPARVLMQDFTGVPCVVDLAAMRDAMNTLGGDAQKINPL 122

Query: 123 SPVDLVIDHSVMVDKFASADALEVNTKIEIERNKERYEFLRWGQKAFSNFQVVPPGTGIC 182
            PV LVIDHSVMVD F +  A + N  +E  RN ERYEFLRWG KA +NF+VVPPGTGIC
Sbjct: 123 VPVHLVIDHSVMVDSFGNPKAFDENVALEYARNGERYEFLRWGSKALNNFKVVPPGTGIC 182

Query: 183 HQVNLEYLGKTVWNS-ENDGQLYAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLG 241
           HQVNLE L + VW+S +  G   AYPDT VGTDSHTTMINGLGVLGWGVGGIEAEAAMLG
Sbjct: 183 HQVNLENLAQAVWSSADGSGVEVAYPDTCVGTDSHTTMINGLGVLGWGVGGIEAEAAMLG 242

Query: 242 QPVSMLIPEVIGFKLSGKLKEGITATDLVLTVTQMLRKKGVVGKFVEFYGPGLNDLPLAD 301
           QPVSMLIPEV+GFKLSG L EGITATDLVLTVTQMLR KGVVG+FVEFYGPGL+ L LAD
Sbjct: 243 QPVSMLIPEVVGFKLSGTLNEGITATDLVLTVTQMLRAKGVVGRFVEFYGPGLDALSLAD 302

Query: 302 RATISNMAPEYGATCGFFPVDKETIKYLELTGRDKHTIALVEAYAKAQGMWYDKDNEEPV 361
           RATI+NMAPEYGATCGFFP+D  T+ Y+ LTGR    +ALVEAYAK QG W D    +PV
Sbjct: 303 RATIANMAPEYGATCGFFPIDDATLVYMRLTGRSAENVALVEAYAKEQGFWRDATAPDPV 362

Query: 362 FTDSLHLDLGSVEPSLAGPKRPQDKVNLSSLPVEFNNFLIEVGKE-KEKEKTFAVKNKDF 420
           FTD+LHLD+ +V+PSLAGPKRPQD+V L+S+   FN+ L    K+  E +K  AV+  DF
Sbjct: 363 FTDTLHLDMSTVQPSLAGPKRPQDRVLLASVDEGFNSELATGYKKGDESDKRVAVEGTDF 422

Query: 421 QMKHGHVVIAAITSCTNTSNPSVLMAAGLVAKKAIEKGLQRKPWVKSSLAPGSKVVTDYL 480
            + HG VVIAAITSCTNTSNPSVL+AAGLVA+KA   GL+ KPWVK+SLAPGS+VVTDYL
Sbjct: 423 DLGHGDVVIAAITSCTNTSNPSVLVAAGLVARKANALGLKAKPWVKTSLAPGSQVVTDYL 482

Query: 481 RHAGLQTYLDQLGFNLVGYGCTTCIGNSGPLPDDISHCVAEHDLVVSSVLSGNRNFEGRV 540
             AGLQ  LD +GFNLVGYGCTTCIGNSGPLPD IS  +  +DLV S+VLSGNRNFEGRV
Sbjct: 483 EKAGLQKDLDAIGFNLVGYGCTTCIGNSGPLPDPISKAINGNDLVASAVLSGNRNFEGRV 542

Query: 541 HPQVRANWLASPPLVVAYALCGTTCSDLSREPIGQDKEGNDVYLKDIWPSNEEIAAEVAK 600
            P VRAN+LASPPLVVAYAL GTT  D++++PIG   +G  VYLKDIWP+  E+A  VA 
Sbjct: 543 SPDVRANYLASPPLVVAYALFGTTAKDITQDPIGTSTDGKPVYLKDIWPTTAEVANTVAA 602

Query: 601 -VSGTMFRKEYAEVFKGDAHWQAIQTSSGQTYEWNPDSTYIQHPPFFENLSLKPEPLKPI 659
            +   MF   YA VF+GD +WQAI      TY W   STY+ +PP+FE +S+ P P++ I
Sbjct: 603 AIDSEMFASRYANVFQGDKNWQAIDVEGSDTYTWRAGSTYVANPPYFEGMSMTPAPVRDI 662

Query: 660 KQAYVLALFGDSITTDHISPAGSIKASSPAGLYLKSKGVDEKDFNSYGSRRGNHEVMMRG 719
            +A  LA+F DSITTDHISPAGSIK  SPAG YL    V + DFNSYG+RRGNHEVMMRG
Sbjct: 663 VEARPLAIFADSITTDHISPAGSIKVDSPAGRYLTEHQVTKADFNSYGARRGNHEVMMRG 722

Query: 720 TFANIRIRNEMTPGQEGGVTRYVPTGETMSIYDAAMRYQENQQDLVIIAGKEYGTGSSRD 779
           TFANIRI+N+M PG EGG+T+++P+GE M+IYDAAM+Y++    LV++AGKEYGTGSSRD
Sbjct: 723 TFANIRIKNQMIPGIEGGLTKHIPSGEVMAIYDAAMKYKQEGTPLVVVAGKEYGTGSSRD 782

Query: 780 WAAKGTNLLGVKAVITESFERIHRSNLIGMGILPLQFKEGTTRKTLKLDGSERISIEISD 839
           WAAKGTNLLGV+AVI ESFERIHRSNL+GMG+LPLQF EG  R TLKLDG+E  +IE   
Sbjct: 783 WAAKGTNLLGVRAVIAESFERIHRSNLVGMGVLPLQFAEGVDRNTLKLDGTETFTIEDVA 842

Query: 840 KLTPGAMVPVTIERQDGDIEKIETLCRIDTADELEYYKNGGILQYVLRKISS 891
            L P   V V + R DG  E  ET CRIDT +ELEY+ NGGILQYVLRK+++
Sbjct: 843 GLRPRQTVSVKLTRADGSTETFETRCRIDTVNELEYFLNGGILQYVLRKLAA 894


Lambda     K      H
   0.316    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2076
Number of extensions: 87
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 894
Length adjustment: 43
Effective length of query: 848
Effective length of database: 851
Effective search space:   721648
Effective search space used:   721648
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory