GapMind for catabolism of small carbon sources

 

Alignments for a candidate for mglA in Dethiosulfovibrio salsuginis USBA 82

Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate WP_085544213.1 B9Y55_RS04705 ABC transporter ATP-binding protein

Query= TCDB::G4FGN3
         (494 letters)



>NCBI__GCF_900177735.1:WP_085544213.1
          Length = 505

 Score =  315 bits (808), Expect = 2e-90
 Identities = 175/493 (35%), Positives = 288/493 (58%), Gaps = 10/493 (2%)

Query: 5   LEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGEIIYE 64
           L +K + K F    A+  +S++   G +HA+VGENGAGKST+MK I G++ PD GEI  +
Sbjct: 4   LSIKGLTKTFGPFVAVDDISVDIKGGTIHAVVGENGAGKSTIMKCIYGIHHPDRGEISMD 63

Query: 65  GRGVRWNHPSEAINAGIVTVFQELSVMDNLSVAENIFMGDEEKRGIFIDYKKMYREAEKF 124
           G+ +    P +A+ +GI  V Q   ++ ++SV  N+ +GDE  +G+  D  +   E  + 
Sbjct: 64  GKPLYIRSPRDAMASGIGMVHQHFMLVPSMSVCRNVVLGDEPVKGLAFDLNRARSEVFRL 123

Query: 125 MKEEFGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETEKLFEVV 184
           + E +G++I P+  +G   + +QQ VEI + +Y++A+VLI DEPT+ L+ KE  +LFE +
Sbjct: 124 I-ELYGLDISPDVPVGTLPVGLQQQVEILKLLYRQAEVLIFDEPTAVLSPKEVGRLFETL 182

Query: 185 KSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMVGRKLEK 244
           +  K+ G  +IFI+H L E+ +I D +SV+R G  I T     L K  + E+MVGR +  
Sbjct: 183 RGFKDAGKTVIFIAHNLGEVLDISDNISVMRKGSLIDTRPASELDKSSLAELMVGRAINL 242

Query: 245 FYIKEAHEPGEV-VLEVKNLS--GER---FENVSFSLRRGEILGFAGLVGAGRTELMETI 298
             + +     +  +LE+  +S  G+     ++VS  +  GE+LG AG+ G G++EL E I
Sbjct: 243 PSVTDGPVLSKTPLLELSGISVAGDSRPLLDDVSLKIHGGEVLGVAGITGNGQSELEEVI 302

Query: 299 FGFRPKRGGEIYIEGKRVEINHPLDAIEQGIGLVPEDRKKLGLILIMSIMHN--VSLPSL 356
            G R +  G + I+G  +  +      E G+  +PEDR K GL  + S+  N  +     
Sbjct: 303 SGLR-ESDGTVVIDGVDLTSSDSHRRRESGLAYIPEDRLKTGLAPLASLADNGLMGYQYQ 361

Query: 357 DRIKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLALKPKIL 416
           DR + GPF +        D  +  + +  A+   +   LSGGN Q++V+ + L   PK+L
Sbjct: 362 DRFRNGPFQNRAESLSHIDGIMDKYGVAAAHRAVQSGTLSGGNMQRLVMGRELEHDPKVL 421

Query: 417 ILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFGKLAGII 476
           ++ +PTRG+D+G   EI+R +  L   G  V++ISS+L EVL +SDR+AVM  GK+  ++
Sbjct: 422 VVSQPTRGVDIGGAEEIHRHILDLRSRGSAVLLISSDLEEVLSLSDRVAVMFRGKIVALL 481

Query: 477 DAKEASQEKVMKL 489
            +KEA++++V ++
Sbjct: 482 SSKEATRDRVGRI 494



 Score = 90.9 bits (224), Expect = 9e-23
 Identities = 69/224 (30%), Positives = 107/224 (47%), Gaps = 6/224 (2%)

Query: 269 ENVSFSLRRGEILGFAGLVGAGRTELMETIFGFRPKRGGEIYIEGKRVEINHPLDAIEQG 328
           +++S  ++ G I    G  GAG++ +M+ I+G      GEI ++GK + I  P DA+  G
Sbjct: 20  DDISVDIKGGTIHAVVGENGAGKSTIMKCIYGIHHPDRGEISMDGKPLYIRSPRDAMASG 79

Query: 329 IGLVPEDRKKLGLILIMSIMHNVSLPSLDRIKKGPFISFKREKELADWAIKTFDIRPAYP 388
           IG+V    +   L+  MS+  NV L   D   KG      R +      I+ + +  + P
Sbjct: 80  IGMV---HQHFMLVPSMSVCRNVVLG--DEPVKGLAFDLNRARSEVFRLIELYGLDIS-P 133

Query: 389 DRKVLYLSGGNQQKVVLAKWLALKPKILILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVI 448
           D  V  L  G QQ+V + K L  + ++LI DEPT  +       ++  +      G  VI
Sbjct: 134 DVPVGTLPVGLQQQVEILKLLYRQAEVLIFDEPTAVLSPKEVGRLFETLRGFKDAGKTVI 193

Query: 449 MISSELPEVLQMSDRIAVMSFGKLAGIIDAKEASQEKVMKLAAG 492
            I+  L EVL +SD I+VM  G L     A E  +  + +L  G
Sbjct: 194 FIAHNLGEVLDISDNISVMRKGSLIDTRPASELDKSSLAELMVG 237



 Score = 73.2 bits (178), Expect = 2e-17
 Identities = 56/244 (22%), Positives = 118/244 (48%), Gaps = 10/244 (4%)

Query: 3   PILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGEII 62
           P+LE+  I         L  VS++ + GEV  + G  G G+S L ++I+G+ + D G ++
Sbjct: 255 PLLELSGISVAGDSRPLLDDVSLKIHGGEVLGVAGITGNGQSELEEVISGLRESD-GTVV 313

Query: 63  YEGRGVRWNHPSEAINAGIVTVFQE---LSVMDNLSVAENIFMG----DEEKRGIFIDYK 115
            +G  +  +       +G+  + ++     +    S+A+N  MG    D  + G F +  
Sbjct: 314 IDGVDLTSSDSHRRRESGLAYIPEDRLKTGLAPLASLADNGLMGYQYQDRFRNGPFQNRA 373

Query: 116 KMYREAEKFMKEEFGIEIDPEE-KLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQ 174
           +     +  M +++G+       + G  S    Q + + R +    KVL++ +PT  +  
Sbjct: 374 ESLSHIDGIM-DKYGVAAAHRAVQSGTLSGGNMQRLVMGRELEHDPKVLVVSQPTRGVDI 432

Query: 175 KETEKLFEVVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIV 234
              E++   +  L+ +G A++ IS  LEE+  + D+V+V+  G+ +   S +  T++++ 
Sbjct: 433 GGAEEIHRHILDLRSRGSAVLLISSDLEEVLSLSDRVAVMFRGKIVALLSSKEATRDRVG 492

Query: 235 EMMV 238
            +M+
Sbjct: 493 RIML 496


Lambda     K      H
   0.318    0.138    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 642
Number of extensions: 41
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 3
Number of HSP's successfully gapped: 3
Length of query: 494
Length of database: 505
Length adjustment: 34
Effective length of query: 460
Effective length of database: 471
Effective search space:   216660
Effective search space used:   216660
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory