GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argJ in Clostridium acetobutylicum ATCC 824

Align Arginine biosynthesis bifunctional protein ArgJ; EC 2.3.1.35; EC 2.3.1.1 (characterized)
to candidate NP_349006.1 CA_C2391 bifunctional ornithine acetyltransferase/N-acetylglutamate synthase

Query= SwissProt::Q9Z4S1
         (397 letters)



>NCBI__GCF_000008765.1:NP_349006.1
          Length = 408

 Score =  374 bits (960), Expect = e-108
 Identities = 204/393 (51%), Positives = 263/393 (66%), Gaps = 4/393 (1%)

Query: 7   FSYAGVHCRIKRKRK-DLGIIFSEVPCTAAGVFTTNVVKAAPVIYDMEILGKNPSGIRAI 65
           F   GV   IK   K DL +I+SE PC AAG FTTN VKAAPV+ D++ +      I AI
Sbjct: 18  FKAIGVASGIKGNNKSDLCVIYSEKPCIAAGTFTTNKVKAAPVLLDLKHI--ESENIYAI 75

Query: 66  TVNSGVANACTGEQGMINARRMAEKTAKELNIPVESVLVSSTGVIGVQLPMEKVESGIEE 125
             NSG ANACTG+ G   A  MAE TAK L I  E VLV+STGVIGV LP++KV  GIE+
Sbjct: 76  VANSGNANACTGDDGYEKAYLMAECTAKHLKIKPEEVLVASTGVIGVPLPIDKVMFGIEK 135

Query: 126 AVKNLSKDPVPFA-EAIMTTDTKIKIHSKKVTIEGKEITVLGIAKGSGMIHPNMATMLSF 184
           A   L K     A +AIMTTDT  K    +  ++ K++T+  IAKGSGMIHPNMATMLSF
Sbjct: 136 AFSILPKSDANKAIDAIMTTDTVQKKIFVEFMLDKKKVTICAIAKGSGMIHPNMATMLSF 195

Query: 185 ITTDANVSEDALKKLLKISVDDSYNMIDVDGDTSTNDMVIILANGLAGNAPIQEETDGFW 244
           I TDAN+++D L K LK SV DSYNMI VD DTSTNDM ++LANG +GN  I  E   + 
Sbjct: 196 IVTDANITKDLLNKALKESVKDSYNMISVDRDTSTNDMALLLANGASGNTLISSENSDYE 255

Query: 245 KLYEAVHEVNQVLAEKIVEDGEGATKVIEVEVRNAPDRNSARLIARAIVSSNLVKTAIYG 304
              +A+H VN  +++ I +DGEGATK+IE +V  A     A++ A+++++SNLVK A++G
Sbjct: 256 VFKKALHYVNVEISKMIAKDGEGATKLIEAKVFGASSSRDAKVAAKSVITSNLVKAAVFG 315

Query: 305 EDANWGRVIAAAGYSGAQFDPDRLDLFFESAAGRIKVAENGQGVDFDEDTAKKILSEKKV 364
            DANWGR+I A GYS A+ DP ++D+ F +   +++    G G++FDE+ AKKIL    V
Sbjct: 316 SDANWGRIICALGYSAAEIDPSKVDISFSNNDSKVETCLKGTGLNFDEEAAKKILDGDHV 375

Query: 365 KIILDMKQGKELARAWGCDLTEKYVEINGRYRT 397
            I +++  GK  A AWGCDLT  YV+ING YR+
Sbjct: 376 IIEVNLNNGKFNATAWGCDLTYDYVKINGSYRS 408


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 430
Number of extensions: 18
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 408
Length adjustment: 31
Effective length of query: 366
Effective length of database: 377
Effective search space:   137982
Effective search space used:   137982
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory