GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Geobacter metallireducens GS-15

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_004512793.1 GMET_RS01025 acetylornithine transaminase

Query= BRENDA::B1XNF8
         (418 letters)



>NCBI__GCF_000012925.1:WP_004512793.1
          Length = 399

 Score =  405 bits (1040), Expect = e-117
 Identities = 209/394 (53%), Positives = 269/394 (68%), Gaps = 11/394 (2%)

Query: 21  DQYVMHTYGRFPVAIAKGEGCRLWDTEGKSYLDFVAGIATCTLGHAHPALIQAVSAQIQK 80
           D+Y+M TYGR+P+   +GEGCR+WD +GK YLDF+AG+A   LGH HP ++ A+  Q  +
Sbjct: 11  DKYIMKTYGRYPLVPVRGEGCRVWDADGKEYLDFLAGVAVNNLGHCHPKVVAALQKQAAE 70

Query: 81  LHHISNLYYIPEQGALAQWIVEHSCADKVFFCNSGAEANEAAIKLVRKYAHTVSDFLEQP 140
           + H SN Y IP Q  LA+ +  +S ADK FFCNSGAEANEAAIKL RKYA   +  +E+ 
Sbjct: 71  MIHCSNYYNIPTQIELAELLCSNSFADKAFFCNSGAEANEAAIKLARKYAREKTGDVERY 130

Query: 141 VILSAKSSFHGRTLATITATGQPKYQKHFDPLPDGFAYVPYNDIRALEEAITDIDEGNRR 200
            I++A +SFHGRT+ATI+ATGQ K QK FDPL  GF YVP++D  ALE A+T       +
Sbjct: 131 EIITAIASFHGRTMATISATGQEKVQKFFDPLLHGFTYVPFDDADALEAAVTP------K 184

Query: 201 VAAIMLEALQGEGGVRPGDVEYFKAVRRICDENGILLVLDEVQVGVGRTGKYWGYENLGI 260
             A+MLE +QGEGGV     +YF+ VR ICD +G+LL+ DEVQVG+GRTGK + +E+  +
Sbjct: 185 TCAVMLEPIQGEGGVVIPSADYFRKVREICDRHGLLLIFDEVQVGIGRTGKLFAHEHFDV 244

Query: 261 EPDIFTSAKGLAGGIPIGAMMCKDSCAV-FNPGEHASTFGGNPFSCAAALAVVETLEQEN 319
            PDI T AK LAGG PIG+M+ KD  A  F+PG H STFGGNP   AA +A V  + +E 
Sbjct: 245 TPDIMTLAKALAGGAPIGSMLAKDEVAASFSPGTHGSTFGGNPLVTAAGVAAVRAVLEEG 304

Query: 320 LLENVNARGEQLRAGLKTLAEKYPYFSDVRGWGLINGMEIKADLELTSIEVVKAAMEKGL 379
           LL      GE L   L+ L EKY + +DVRG GL+ GME+ A     + E+V   +E+G+
Sbjct: 305 LLNRAEEMGEYLVGELERLKEKYAFITDVRGIGLMIGMELSA----PAGEIVLKGLERGV 360

Query: 380 LLAPAGPKVLRFVPPLIVSAAEINEAIALLDQTL 413
           LL  A  KVLRFVPPLIV+  E+NE IA+LD  L
Sbjct: 361 LLNVAQDKVLRFVPPLIVTKQEVNEMIAVLDGIL 394


Lambda     K      H
   0.319    0.136    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 461
Number of extensions: 11
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 399
Length adjustment: 31
Effective length of query: 387
Effective length of database: 368
Effective search space:   142416
Effective search space used:   142416
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory