GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Saccharomonospora cyanea NA-134

Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate WP_005459648.1 SACCYDRAFT_RS22345 diaminobutyrate--2-oxoglutarate transaminase

Query= curated2:Q8TUZ5
         (389 letters)



>NCBI__GCF_000244975.1:WP_005459648.1
          Length = 417

 Score =  194 bits (494), Expect = 3e-54
 Identities = 134/405 (33%), Positives = 212/405 (52%), Gaps = 31/405 (7%)

Query: 12  MNTYSR-FPVTLVPGEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQVER--L 68
           + +YSR +PV     +G+ ++ ++G  Y+D  AG      GH +P + +A+ + + R  +
Sbjct: 11  VRSYSRGWPVVFDRAQGSWLYSEDGKAYLDFFAGAGALNYGHNNPVLKKALIDYISRDGV 70

Query: 69  IHCSNLYYNEPQAEAARLLAEAA--PKDLN-KVFFCN-SGTESVECAIKLARKFTGCTKF 124
            H  +++    + +  + L +    P+++  KV F    G  +VE A+KLARK TG    
Sbjct: 71  THALDMF-TVAKRDFLQTLNDVVLKPREMEYKVIFPGPGGANAVEAALKLARKVTGKESV 129

Query: 125 IAFEGGFHGRTMGALSATWKPEFRE----PFEPLVP----EFEHVPYGDVNAVEKAIDD- 175
           I F   FHG T+GALS T     R     P     P    ++    Y D    E+ ++D 
Sbjct: 130 INFTNAFHGMTLGALSVTGNSLKRGGAGIPLVHATPMPYDKYFDGAYPDFLYFERLLEDS 189

Query: 176 -----DTAAVIVEPVQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRTGQFFA 230
                + AAVIVE VQGE G+      +L+ L ELC  HG+LLI+D+VQ G GRTG FF+
Sbjct: 190 GSGLNEPAAVIVETVQGEGGINAARLEWLKGLSELCQRHGILLILDDVQMGCGRTGPFFS 249

Query: 231 FEHEDVLPDIVCLAKGLGG-GVPVGATIAREEVAEAFEPGDHGSTFGGNPLACAAVCAAV 289
           FE   + PD++CL+K +GG G+P+  T+ R ++ + + PG+H  TF G   A      A+
Sbjct: 250 FEEAGIKPDMICLSKSIGGYGLPLAITLIRPDL-DVWSPGEHNGTFRGINPAFVTAAEAL 308

Query: 290 STV-----LEENLPEAAERKGKLAMRILSEAEDVVEEVRGRGLMMGVEVGDDERAKDVAR 344
            T      LE+      ER G++   +++   D     +GRGL  G+E    E A  V  
Sbjct: 309 RTYWRDDELEKATKAKGERVGEVFAELVNRYPDANLIAKGRGLARGLEFATGEVAGKVCA 368

Query: 345 EMLDRGALVNVT--SGDVIRLVPPLVIGEDELEKALAELADALRA 387
              DRG L+  +   G+V++L+P L   E+E+E+ L+ + D++ A
Sbjct: 369 AAFDRGLLMETSGPDGEVVKLLPALTTTEEEIEQGLSIIKDSVDA 413


Lambda     K      H
   0.318    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 411
Number of extensions: 21
Number of successful extensions: 7
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 417
Length adjustment: 31
Effective length of query: 358
Effective length of database: 386
Effective search space:   138188
Effective search space used:   138188
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory