GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisI in Methanosarcina acetivorans C2A

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate WP_011023136.1 MA_RS16720 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>NCBI__GCF_000007345.1:WP_011023136.1
          Length = 433

 Score =  341 bits (875), Expect = 4e-98
 Identities = 178/406 (43%), Positives = 263/406 (64%), Gaps = 7/406 (1%)

Query: 382 SEIMHLVNPIIENVRDKGNSALLEYTEKFDGVKLSNPVLNAPFPEEYFEGLTEEMKEALD 441
           +++   V+ ++ +VR +G++AL EYT+KFD V+L+   ++    EE   G+  E+ E L 
Sbjct: 28  ADVGETVSSVLSDVRVRGDAALREYTKKFDKVELAGFEVSEAEFEEALSGVGPELLEHLK 87

Query: 442 LSIENVRKFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTAILPSTALMLGVP 501
           ++  N+R FH AQLP  T  +E QPGV+  +    +E VG Y PGG A  PST LM  +P
Sbjct: 88  VAAANIRVFHEAQLPETTWFMEVQPGVVLGQKATALESVGAYAPGGRASYPSTVLMTVIP 147

Query: 502 AQVAQCKEIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPKV 561
           A+VA  K+++  +PPR +DG + P  +  A+  GA K+   GG QAV AMAYGTET+PKV
Sbjct: 148 ARVAGVKQVIVCTPPR-ADGSIHPLTLAAAKVAGADKVFKLGGVQAVGAMAYGTETVPKV 206

Query: 562 DKILGPGNQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAEH 621
           DKI+GPGN FVT+AKM V+N    +  ID PAGPSEVL+IAD+ AD   VASD+++QAEH
Sbjct: 207 DKIVGPGNVFVTSAKMQVRN----VAEIDFPAGPSEVLIIADDSADAAMVASDIIAQAEH 262

Query: 622 GIDSQVILVGVNLSEKKIQEIQDAVHNQALQLPRVDIVRKCIAHSTIVLCDGYEEALEMS 681
             D   + V V  SE   + ++  V  QA    R +IV+  + ++ +++ D  E++++ S
Sbjct: 263 --DPNAVSVLVTTSEILAEAVRQEVLLQAENTARSEIVKTSLENAAVLISDTLEQSIDFS 320

Query: 682 NQYAPEHLILQIANANDYVKLVDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQYSG 741
           N++APEHL + + +++  +  + NAGS+FVG Y P   GDY+SGTNH LPT GYAR YSG
Sbjct: 321 NKFAPEHLEIMVEDSDFVLNRIKNAGSIFVGNYAPVPVGDYASGTNHVLPTAGYARIYSG 380

Query: 742 ANTATFQKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIR 787
            N   F K+ + Q I+  GLE++   ++ +A++EGL  H +A++ R
Sbjct: 381 LNINHFLKYSSIQKISKSGLESLKETIIALAEEEGLQAHADAIRTR 426


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 686
Number of extensions: 35
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 433
Length adjustment: 37
Effective length of query: 762
Effective length of database: 396
Effective search space:   301752
Effective search space used:   301752
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory