GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysJ in Sulfurimonas denitrificans DSM 1251

Align [LysW]-aminoadipate semialdehyde/glutamate semialdehyde transaminase; EC 2.6.1.118; EC 2.6.1.124 (uncharacterized)
to candidate WP_011372884.1 SUDEN_RS06570 aspartate aminotransferase family protein

Query= curated2:Q7SI94
         (388 letters)



>NCBI__GCF_000012965.1:WP_011372884.1
          Length = 394

 Score =  204 bits (520), Expect = 3e-57
 Identities = 138/392 (35%), Positives = 210/392 (53%), Gaps = 27/392 (6%)

Query: 4   LLKFYQDRGIKIIKGEGQYVWDEKNNKYLDMHAGHGVAFLGHRNKVIIDHLKKQMEEIST 63
           +L  Y    ++ + G    V D    KY+D  +G  V  +GH NK + D + KQ+  I+ 
Sbjct: 12  VLPTYARADVEFVSGNNAIVVDANGKKYIDFASGIAVCSVGHANKRVNDAICKQLSNITH 71

Query: 64  LSLAFDTPIREEMIKELDELKPEDLDNLFLLNSGSEAVELALKIARKI------TKRRKI 117
            S  +    + +  +++ E    D+   F  NSG+EA E A+KIARK        KR K+
Sbjct: 72  TSNLYYIAPQAKAAQKIVEASGYDM-KCFFGNSGAEANEGAIKIARKFGEKDGELKRYKV 130

Query: 118 VAFKNSFHGRSMGALSVTWNKKYREPFEPLIGPVEFLEYNNVDSLKSITED-TAAVIVEP 176
           +  ++SFHGR++  +  T  +K    F P   P  F+  +N+D + S+ +D T AV++E 
Sbjct: 131 ITLQHSFHGRTITTVKATGQEKMHNYFGPY--PDGFVYADNIDHVASLVDDHTCAVMIEL 188

Query: 177 VQGEGGVIPAKKEFVKSLREVTEKVNALLIIDEVQTGFGRTGKIWAYQHFDIKPDILTAG 236
           VQGEGGV P  ++ V+ L +  ++ N LLIIDEVQTG  RTGK  A  ++DIKPD++T  
Sbjct: 189 VQGEGGVQPLDRDSVQKLAKFLKEKNVLLIIDEVQTGIYRTGKFLASNYYDIKPDVVTLA 248

Query: 237 KAIGGGFPVSAVFLPNWISEKIEEGDHGSTYGGNPLAAAAVTAACKVAKSEKIAEQAQKK 296
           K +GGG P+  V     + +    GDHGST+GGN L   + TAAC+V     I  +  + 
Sbjct: 249 KGLGGGVPIGVVM--TTLKDVFGAGDHGSTFGGNFL---STTAACEVV---DILNEMNES 300

Query: 297 GELFMRI--LKEKLEDF-----KIVREIRGLGLMIGIDLKVNPSIA--IKVLQDEKVLSL 347
           GEL   I     +LE F      I     G+G+M G+ +K   ++   I   ++E V+ L
Sbjct: 301 GELQKGIDYFDSELEKFYNAHRDIFTSKVGIGMMCGLRVKDGDTLTKIISNAREEGVIVL 360

Query: 348 KAGLTTIRFLPPYLITQSDMEWASDATRKGIS 379
           KAG  T+R LP   IT+ +++    +  + IS
Sbjct: 361 KAGRDTLRLLPALTITKEEIDEGFTSLNRTIS 392


Lambda     K      H
   0.317    0.136    0.386 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 350
Number of extensions: 15
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 388
Length of database: 394
Length adjustment: 31
Effective length of query: 357
Effective length of database: 363
Effective search space:   129591
Effective search space used:   129591
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory