GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysN in Rhizobium etli CFN 42

Align 2-aminoadipate transaminase; 2-aminoadipate aminotransferase; L-2AA aminotransferase; EC 2.6.1.39 (characterized)
to candidate WP_011423889.1 RHE_RS02610 acetylornithine transaminase

Query= SwissProt::Q88FI7
         (416 letters)



>NCBI__GCF_000092045.1:WP_011423889.1
          Length = 399

 Score =  194 bits (492), Expect = 5e-54
 Identities = 140/405 (34%), Positives = 200/405 (49%), Gaps = 43/405 (10%)

Query: 15  PITLSHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHYA-FNAAP 73
           P+    G    +    G+RY+DF  G+ V ++GH NP VV A++ QA ++ H +     P
Sbjct: 15  PLRFERGEGVWLITESGERYLDFGAGVAVTSVGHGNPHVVAALKEQADKVWHLSNIYEIP 74

Query: 74  HGPYLALMEQLSQFVPVSYPLAGMLTNSGAEAAENALKVAR------GATGKRAIIAFDG 127
               LA      +    ++      TNSGAEA E A+K AR      G   +  II F+G
Sbjct: 75  GQERLA-----KRLTDATFADKVFFTNSGAEALECAIKTARRYQFSKGHPERFHIITFEG 129

Query: 128 GFHGRTLATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVELA 187
            FHGRTLAT+   G+   Y +  G        +P+   +                +V  A
Sbjct: 130 AFHGRTLATIAAGGQ-EKYLEGFGPKAPGFDQVPFGDIE----------------AVRAA 172

Query: 188 VEDV-AAFIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAFP 246
           + D  AA + EPVQGEGG       F +ALRR CDE G+L+I+DE+Q+G GRTG+ FA  
Sbjct: 173 ITDATAAILIEPVQGEGGVRPATTEFMKALRRICDENGLLLILDEVQTGVGRTGKLFAHE 232

Query: 247 RLGIEPDLLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLAQM 306
             GI PD++ +AK I GG PLGA +   E  + +  G  G TY GNP++ A   A L  +
Sbjct: 233 WSGITPDIMAVAKGIGGGFPLGACLATAEAASGMKAGTHGSTYGGNPLAMAVGSAVLDVI 292

Query: 307 TDENLATWGERQEQAIVSRYERWKASGLSP-YIGRLTGVGAMRGIEFANADGSPAPAQLA 365
             E        ++ A+V R          P  I  + G G + G++        A    A
Sbjct: 293 LAEGFLE--HVRDVALVFRQGLASLKDRYPDVIEDIRGEGLLLGVK--------AAVPSA 342

Query: 366 KVMEAARARGLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQ 410
           ++++A RA  LL +P+G   ++IRLL PL + AE   EGL  LE+
Sbjct: 343 ELLQAIRAAHLLGVPAGD--NVIRLLPPLVVTAEEAREGLARLER 385


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 440
Number of extensions: 27
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 399
Length adjustment: 31
Effective length of query: 385
Effective length of database: 368
Effective search space:   141680
Effective search space used:   141680
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory