GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD'B in Trichodesmium erythraeum IMS101

Align Succinylornithine transaminase (EC 2.6.1.81) (characterized)
to candidate WP_011612205.1 TERY_RS12675 aspartate aminotransferase family protein

Query= reanno::pseudo1_N1B4:Pf1N1B4_3440
         (406 letters)



>NCBI__GCF_000014265.1:WP_011612205.1
          Length = 423

 Score =  335 bits (859), Expect = 1e-96
 Identities = 174/397 (43%), Positives = 245/397 (61%), Gaps = 8/397 (2%)

Query: 12  DFDQVMVPNYAPAAFIPVRGAGSRVWDQSGRELIDFAGGIAVNVLGHAHPALVAALTEQA 71
           +F+  ++  Y        RG G RVWD  G+E +DF  GIA   LGHAHP ++A ++EQ 
Sbjct: 24  NFNTYVMNTYGRFPIAIERGEGCRVWDTEGKEYLDFVAGIATCTLGHAHPVMMATVSEQI 83

Query: 72  NKLWHVSNVFTNEPALRLAHKLVDATFAERVFFCNSGAEANEAAFKLARRVAHDRFGTEK 131
            +L HVSN++       LA  L+  + A++ FFCNSGAEANE A KLAR+ AH++   E 
Sbjct: 84  KRLHHVSNLYYIPVQGELAQWLIQHSCADKAFFCNSGAEANEGAIKLARKYAHEKLNIEN 143

Query: 132 YEIVAALNSFHGRTLFTVNVGGQSKYSDGFGPKITGITHVPYNDLAALKAAVSD------ 185
             I+ A  SFHGRTL T+   GQ KY  GF P + G  +VPYND+AA+++A+ +      
Sbjct: 144 PTILTAHASFHGRTLATMTATGQPKYHKGFSPLMPGFYYVPYNDIAAIESAIEELDKDKR 203

Query: 186 KTCAVVLEPIQGEGGVLPAELSYLQGARELCDAHNALLVFDEVQTGMGRSGKLFAYQHYG 245
           +  A++LE +QGEGG+ P +++Y +  RE+C+    LL+ DEVQ GMGRSGK++ Y++ G
Sbjct: 204 QVAAIMLEALQGEGGIRPGDMTYFKRIREICNEKGILLILDEVQAGMGRSGKIWGYENLG 263

Query: 246 VTPDILTSAKSLGGGFPIAAMLTTEDLAKHLVVGTHGTTYGGNPLACAVAEAVIDVINTP 305
           + PDI TSAK LGGG PI AML  +        G+H +T+GGNP ACAVA AV   +   
Sbjct: 264 IEPDIFTSAKGLGGGIPIGAML-CKSHCDVFEPGSHASTFGGNPFACAVALAVCHTLEQE 322

Query: 306 EVLNGVNAKHDKFKTRLEQIGEKY-GLFTEVRGLGLLLGCVLSDAWKGKAKDIFNAAERE 364
            +L  V  + D+ +  L+ I +KY  LF+EVRG GL+ G  L+      + DI  AA  E
Sbjct: 323 NLLANVQQRGDELRIELKAIADKYPNLFSEVRGWGLINGLELNATATLTSIDIVKAAMNE 382

Query: 365 GLMILQAGPDVIRFAPSLVVEDADIDAGLDRFERAAA 401
           GL+I+ AGP V+RF P L+V + ++   +D   +A A
Sbjct: 383 GLLIVPAGPKVLRFVPPLIVTETEVKEAMDLLAKAIA 419


Lambda     K      H
   0.320    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 435
Number of extensions: 17
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 423
Length adjustment: 31
Effective length of query: 375
Effective length of database: 392
Effective search space:   147000
Effective search space used:   147000
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory