GapMind for Amino acid biosynthesis

 

Alignments for a candidate for dapC in Trichodesmium erythraeum IMS101

Align acetylornithine/N-succinyldiaminopimelate aminotransferase [EC:2.6.1.11 2.6.1.17] (characterized)
to candidate WP_011612205.1 TERY_RS12675 aspartate aminotransferase family protein

Query= reanno::azobra:AZOBR_RS19025
         (389 letters)



>NCBI__GCF_000014265.1:WP_011612205.1
          Length = 423

 Score =  311 bits (796), Expect = 3e-89
 Identities = 173/395 (43%), Positives = 238/395 (60%), Gaps = 11/395 (2%)

Query: 5   VMPTYARADIVFERGEGPYLYATDGRRFLDFAAGVAVNVLGHANPYLVEALTAQAHKLWH 64
           VM TY R  I  ERGEG  ++ T+G+ +LDF AG+A   LGHA+P ++  ++ Q  +L H
Sbjct: 29  VMNTYGRFPIAIERGEGCRVWDTEGKEYLDFVAGIATCTLGHAHPVMMATVSEQIKRLHH 88

Query: 65  TSNLFRVAGQESLAKRLTEATFADTVFFTNSGAEAWECGAKLIRKYHYEKGDKARTRIIT 124
            SNL+ +  Q  LA+ L + + AD  FF NSGAEA E   KL RKY +EK +     I+T
Sbjct: 89  VSNLYYIPVQGELAQWLIQHSCADKAFFCNSGAEANEGAIKLARKYAHEKLNIENPTILT 148

Query: 125 FEQAFHGRTLAAVSAAQQEKLIKGFGPLLDGFDLVPFGDLEAVRNAVTD------ETAGI 178
              +FHGRTLA ++A  Q K  KGF PL+ GF  VP+ D+ A+ +A+ +      + A I
Sbjct: 149 AHASFHGRTLATMTATGQPKYHKGFSPLMPGFYYVPYNDIAAIESAIEELDKDKRQVAAI 208

Query: 179 CLEPIQGEGGIRAGSVEFLRGLREICDEHGLLLFLDEIQCGMGRTGKLFAHEWAGITPDV 238
            LE +QGEGGIR G + + + +REIC+E G+LL LDE+Q GMGR+GK++ +E  GI PD+
Sbjct: 209 MLEALQGEGGIRPGDMTYFKRIREICNEKGILLILDEVQAGMGRSGKIWGYENLGIEPDI 268

Query: 239 MAVAKGIGGGFPLGACLATEKAASGMTAGTHGSTYGGNPLATAVGNAVLDKVLEPGFLDH 298
              AKG+GGG P+GA L  +        G+H ST+GGNP A AV  AV   + +   L +
Sbjct: 269 FTSAKGLGGGIPIGAMLC-KSHCDVFEPGSHASTFGGNPFACAVALAVCHTLEQENLLAN 327

Query: 299 VQRIGGLLQDRLAGLVAENPAVFKGVRGKGLMLGLACGPAVG----DVVVALRANGLLSV 354
           VQ+ G  L+  L  +  + P +F  VRG GL+ GL           D+V A    GLL V
Sbjct: 328 VQQRGDELRIELKAIADKYPNLFSEVRGWGLINGLELNATATLTSIDIVKAAMNEGLLIV 387

Query: 355 PAGDNVVRLLPPLNIGEAEVEEAVAILAKTAKELV 389
           PAG  V+R +PPL + E EV+EA+ +LAK     V
Sbjct: 388 PAGPKVLRFVPPLIVTETEVKEAMDLLAKAIANTV 422


Lambda     K      H
   0.321    0.139    0.414 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 428
Number of extensions: 21
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 423
Length adjustment: 31
Effective length of query: 358
Effective length of database: 392
Effective search space:   140336
Effective search space used:   140336
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory