GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Methanococcus maripaludis C5

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_011868252.1 MMARC5_RS02450 acetylornithine transaminase

Query= BRENDA::B1XNF8
         (418 letters)



>NCBI__GCF_000016125.1:WP_011868252.1
          Length = 395

 Score =  374 bits (961), Expect = e-108
 Identities = 193/394 (48%), Positives = 255/394 (64%), Gaps = 16/394 (4%)

Query: 22  QYVMHTYGRFPVAIAKGEGCRLWDTEGKSYLDFVAGIATCTLGHAHPALIQAVSAQIQKL 81
           +YV++TYGR PV + KG+G  ++DTEGK Y DF+AGI    +GH HP +++ +  Q Q L
Sbjct: 15  KYVINTYGRVPVVLVKGKGMSVFDTEGKEYFDFLAGIGVNNVGHCHPKVVETIKNQAQTL 74

Query: 82  HHISNLYYIPEQGALAQWIVEHSCADKVFFCNSGAEANEAAIKLVRKYAHTVSDFLEQPV 141
            HISN+YY   Q  LA+ +V  S  DK FFCNSGAEANEAAIKL RKY        ++  
Sbjct: 75  IHISNIYYNVPQIELAKKLVNLSGLDKAFFCNSGAEANEAAIKLARKYGKKKG---KEGE 131

Query: 142 ILSAKSSFHGRTLATITATGQPKYQKHFDPLPDGFAYVPYNDIRALEEAITDIDEGNRRV 201
           I++ + +FHGRTL T+TAT + KYQ+ F+PLP GF Y+P+NDI AL   I++      + 
Sbjct: 132 IITMEHAFHGRTLTTVTATPKAKYQEGFEPLPQGFNYIPFNDIEALNAGISE------KT 185

Query: 202 AAIMLEALQGEGGVRPGDVEYFKAVRRICDENGILLVLDEVQVGVGRTGKYWGYENLGIE 261
           AAIM+E +QGEGG+ P D EY KAVR++CDEN I+L+ DEVQ G+GRTG  + YE  G+ 
Sbjct: 186 AAIMIEPVQGEGGIHPADKEYLKAVRKLCDENNIVLIFDEVQCGMGRTGTMFSYEQYGVV 245

Query: 262 PDIFTSAKGLAGGIPIGAMMCKDSCA-VFNPGEHASTFGGNPFSCAAALAVVETLEQENL 320
           PDI T AKGL GG PIGAM+ K   A  F PG H +TFGGNP +CA++ A ++ +    L
Sbjct: 246 PDIVTLAKGLGGGFPIGAMVAKSEIADAFTPGSHGTTFGGNPLACASSNAAIDVI--SGL 303

Query: 321 LENVNARGEQLRAGLKTLAEKYPYFSDVRGWGLINGMEIKADLELTSIEVVKAAMEKGLL 380
           LEN    GE  R+ LK L EKY +  +VR  GL+ G+E    L     ++V    EKG L
Sbjct: 304 LENTLEMGEYFRSELKKLEEKYDFIKEVRSLGLMVGVE----LTFNGSDIVSKMFEKGFL 359

Query: 381 LAPAGPKVLRFVPPLIVSAAEINEAIALLDQTLA 414
           +      VLRF+PPLIV    I+  I+ LD+  +
Sbjct: 360 INCTSDTVLRFLPPLIVEKEHIDSIISALDEVFS 393


Lambda     K      H
   0.319    0.136    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 475
Number of extensions: 18
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 395
Length adjustment: 31
Effective length of query: 387
Effective length of database: 364
Effective search space:   140868
Effective search space used:   140868
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory