GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Geotalea uraniireducens Rf4

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_011937171.1 GURA_RS01135 acetylornithine transaminase

Query= BRENDA::B1XNF8
         (418 letters)



>NCBI__GCF_000016745.1:WP_011937171.1
          Length = 396

 Score =  409 bits (1050), Expect = e-118
 Identities = 212/397 (53%), Positives = 273/397 (68%), Gaps = 12/397 (3%)

Query: 21  DQYVMHTYGRFPVAIAKGEGCRLWDTEGKSYLDFVAGIATCTLGHAHPALIQAVSAQIQK 80
           D+Y+M TYGR+P+   KGEGC LWD +GK YLDF+AG+A   LGH HP ++ A+  Q  +
Sbjct: 11  DKYIMRTYGRYPLVPVKGEGCYLWDADGKRYLDFLAGVAVNNLGHCHPRVVAALQKQAAE 70

Query: 81  LHHISNLYYIPEQGALAQWIVEHSCADKVFFCNSGAEANEAAIKLVRKYAHTVSDFLEQP 140
           L H SN Y+IP Q  LA+ +  HS AD+ FFCNSGAEANEAAIKL RKY+       ++ 
Sbjct: 71  LIHCSNYYHIPTQIELAEILCNHSFADRAFFCNSGAEANEAAIKLARKYSREKYG-QDRY 129

Query: 141 VILSAKSSFHGRTLATITATGQPKYQKHFDPLPDGFAYVPYNDIRALEEAITDIDEGNRR 200
            I++A +SFHGRT+AT++ATGQ K QK FDPL  GF +VP+ND  ALE+A+T        
Sbjct: 130 EIITALASFHGRTMATVSATGQEKVQKFFDPLLHGFLHVPFNDADALEKAVTP------N 183

Query: 201 VAAIMLEALQGEGGVRPGDVEYFKAVRRICDENGILLVLDEVQVGVGRTGKYWGYENLGI 260
             AIMLE +QGEGGV   D EYF+ VRRICDEN +LL+ DEVQVG+GRTGK + +E+ G+
Sbjct: 184 TCAIMLEPIQGEGGVVVPDAEYFRQVRRICDENNLLLIFDEVQVGIGRTGKLFAHEHFGV 243

Query: 261 EPDIFTSAKGLAGGIPIGAMMCK-DSCAVFNPGEHASTFGGNPFSCAAALAVVETLEQEN 319
            PDI T AK LAGG PIG M+ + D  A F PG H STFGGNP   AA +AV+ T+ +E 
Sbjct: 244 TPDIMTLAKALAGGAPIGTMLAREDLAASFGPGTHGSTFGGNPLVTAAGVAVMRTILEEG 303

Query: 320 LLENVNARGEQLRAGLKTLAEKYPYFSDVRGWGLINGMEIKADLELTSIEVVKAAMEKGL 379
           +L +    GE L   L+ L +K+P  +DVRG GL+ GME    L + + ++VK  +E+G+
Sbjct: 304 ILNHTEEMGEYLMGELEGLKKKFPIITDVRGIGLMIGME----LSVPAGDIVKKGLERGV 359

Query: 380 LLAPAGPKVLRFVPPLIVSAAEINEAIALLDQTLAAM 416
           LL  A  +VLRFVPPLIV   E++E IA+LD  LA M
Sbjct: 360 LLNVAQDRVLRFVPPLIVGKKEVDEMIAVLDGILAEM 396


Lambda     K      H
   0.319    0.136    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 473
Number of extensions: 12
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 396
Length adjustment: 31
Effective length of query: 387
Effective length of database: 365
Effective search space:   141255
Effective search space used:   141255
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 12 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory