GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysN in Sphingomonas wittichii RW1

Align 2-aminoadipate transaminase; 2-aminoadipate aminotransferase; L-2AA aminotransferase; EC 2.6.1.39 (characterized)
to candidate WP_011952251.1 SWIT_RS07135 acetylornithine transaminase

Query= SwissProt::Q88FI7
         (416 letters)



>NCBI__GCF_000016765.1:WP_011952251.1
          Length = 396

 Score =  182 bits (461), Expect = 2e-50
 Identities = 139/389 (35%), Positives = 194/389 (49%), Gaps = 44/389 (11%)

Query: 31  GKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHYA-FNAAPHGPYLALMEQLSQFVP 89
           G+RY+DF  GI V  LGH +P +V+AI  QA  L H +    +P G   A      + V 
Sbjct: 30  GERYLDFASGIAVNILGHGHPDLVKAIADQAATLMHTSNLYGSPQGEAFA-----QKLVD 84

Query: 90  VSYPLAGMLTNSGAEAAENALKVAR------GATGKRAIIAFDGGFHGRTLATLNLNGKV 143
            ++      TNSGAEA E A+K AR      G+  +  II+F   FHGRTL T++   + 
Sbjct: 85  KTFADTVFFTNSGAEAVECAIKTARRYHYVNGSPERTKIISFSNAFHGRTLGTISATSQP 144

Query: 144 APYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVELAVEDVAAFIFEPVQGEG 203
              K R G  P        P  D     E A  A+D            A F+ EPVQGEG
Sbjct: 145 ---KMRDGFEPLLPGFQVVPFNDL----EAARAAVDAT---------TAGFLVEPVQGEG 188

Query: 204 GFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAFPRLGIEPDLLLLAKSIAG 263
           G     P F + LR+ CDE+G+L+I+DE+Q G+ RTG  FA  + GI PD++ +AK IAG
Sbjct: 189 GMTPSKPEFLKGLRQICDEQGLLLILDEVQCGYCRTGTFFAHEQYGITPDIMAVAKGIAG 248

Query: 264 GMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASL-AQMTDE---NLATWGERQE 319
           G PLGA +  +E    +  G  G TY GNP++ AA  A     + DE   N+   G+R  
Sbjct: 249 GFPLGACLATEEAAKGMVFGTHGSTYGGNPLAMAAGEAVFKVAVNDEFLANVRATGDRLR 308

Query: 320 QAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANADGSPAPAQLAKVMEAARARGLLLM 379
           QAI                  + G+G M GI+    D   A A +A + +     GLL +
Sbjct: 309 QAIEQLIPNHDG-----VFDSVRGLGLMIGIKL--KDAVEARAFVAHLRD---HHGLLTV 358

Query: 380 PSGKARHIIRLLAPLTIEAEVLEEGLDIL 408
            +G+  +++R+L PL IE   + E ++ L
Sbjct: 359 AAGE--NVVRILPPLVIEESHIAECIEKL 385


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 409
Number of extensions: 23
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 396
Length adjustment: 31
Effective length of query: 385
Effective length of database: 365
Effective search space:   140525
Effective search space used:   140525
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory