GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Methylobacterium sp. 4-46

Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate WP_012334877.1 M446_RS24880 adenosylmethionine--8-amino-7-oxononanoate transaminase

Query= curated2:Q8TUZ5
         (389 letters)



>NCBI__GCF_000019365.1:WP_012334877.1
          Length = 415

 Score =  192 bits (488), Expect = 1e-53
 Identities = 144/401 (35%), Positives = 201/401 (50%), Gaps = 40/401 (9%)

Query: 19  PVTLVPGEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQVERLIHCSNLYYNE 78
           P+     +G+R+  ++G   +D +A       G+ HP +  AV  Q++ + H        
Sbjct: 22  PLRAARTQGSRILLEDGRSLVDGIASWWTACHGYNHPEIARAVAAQLDAMPHVMFGGLTH 81

Query: 79  PQAEA-ARLLAEAAPKDLNKVFFCNSGTESVECAIKLA------RKFTGCTKFIAFEGGF 131
             AE  AR LA   P DL+ VFF +SG+ +VE A+K A      R   G ++F AF GG+
Sbjct: 82  APAETLARRLAGLLPGDLDHVFFSDSGSVAVEVALKAAAQVWLNRGVAGRSRFAAFRGGY 141

Query: 132 HGRTMGALSATWKPE-FREPFEPLVPEFEHVPYGDVNAVEKAID-------DDTAAVIVE 183
           HG TMGA+S     E     F   +PE       D  A E A+D       D  A VIVE
Sbjct: 142 HGDTMGAMSVCDPEEGMHRRFGRYLPEQVFFDLPDTRAREAALDAGLARHRDGLAGVIVE 201

Query: 184 P-VQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRTGQFFAFEHEDVLPDIVC 242
           P VQG  G+R+ P   L  +  L   HGL+LI+DEV +G GRTG  FA E   V+PD++C
Sbjct: 202 PLVQGAGGMRMHPPEVLARIARLARRHGLILILDEVFTGFGRTGSLFACEQAGVVPDLIC 261

Query: 243 LAKGL-GGGVPVGATIAREEVAEAFEPGD------HGSTFGGNPLACAAVCAAVSTVLEE 295
           L+K L GG +P+ AT+A  E+  AF   D      HG TF  NPLACAA  A++     E
Sbjct: 262 LSKALTGGTMPLAATVATTEIFSAFWSDDPAAALMHGPTFMANPLACAAANASLDLFARE 321

Query: 296 NLPEAAERKGKLAMRILSEAEDVVEEVRGR---------GLMMGVEVGDDERAKDVAREM 346
             P  A+ +  LA R+    E+ +  +RGR         G +  V++        +    
Sbjct: 322 --PRLAQARA-LAARL----EEGLAPLRGRPGIVDVRVLGAIGAVQLAPPLDLAGLKAAF 374

Query: 347 LDRGALVNVTSGDVIRLVPPLVIGEDELEKALAELADALRA 387
           L+RG  V    GD++ L P L IGE++L   LA + + L A
Sbjct: 375 LERGVWVR-PFGDIVYLTPCLTIGEEDLGLLLAAMREVLGA 414


Lambda     K      H
   0.318    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 453
Number of extensions: 29
Number of successful extensions: 7
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 415
Length adjustment: 31
Effective length of query: 358
Effective length of database: 384
Effective search space:   137472
Effective search space used:   137472
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory