GapMind for Amino acid biosynthesis

 

Alignments for a candidate for proB in Denitrovibrio acetiphilus DSM 12809

Align δ1-pyrroline-5-carboxylate synthetase (EC 1.2.1.41; EC 2.7.2.11) (characterized)
to candidate WP_013011161.1 DACET_RS09495 glutamate-5-semialdehyde dehydrogenase

Query= metacyc::AT2G39800-MONOMER
         (717 letters)



>NCBI__GCF_000025725.1:WP_013011161.1
          Length = 411

 Score =  278 bits (712), Expect = 3e-79
 Identities = 153/403 (37%), Positives = 250/403 (62%), Gaps = 6/403 (1%)

Query: 302 ARESSRKLQALSSEDRKKILLDIADALEANVTTIKAENELDVASAQEAGLEESMVARLVM 361
           A+++S  L  ++++ +   L  IA+ LEAN   IK EN  D+  A+E GL ++++ RL +
Sbjct: 9   AKKASYVLMNVNTDVKDSALSAIAEKLEANRVKIKNENLKDLDYARETGLSDALIDRLTL 68

Query: 362 TPGKISSLAASVRKLADMEDPIGRVLKKTEVADGLVLEKTSSPLGVLLIVFESRPDALVQ 421
              +I  +  +V+ +    DP+G+V+   +  +GL + K   PLGV+ I+FESRP+  + 
Sbjct: 69  DDKRIDGMIQAVKDIRSQVDPVGKVVDGYKRPNGLYITKVKVPLGVVGIIFESRPNVTID 128

Query: 422 IASLAIRSGNGLLLKGGKEARRSNAILHKVITDAIPETVGGKL-IGLV--TSREEIPDLL 478
            A+L ++SGN  +L+GGKEA  SN  L +++ +A+ E    K  + ++  T R  + ++L
Sbjct: 129 AAALCLKSGNVAILRGGKEAVHSNTYLGRLMKEAVAEAGLPKACVNIIEDTDRGLVMEML 188

Query: 479 KLDDVIDLVIPRGSNKLVTQIKNTTKIPVLGHADGICHVYVDKACDTDMAKRIVSDAKLD 538
           K    ID++IPRG   L+      + IP++ H DGICHVY+DK  D +MA  I  +AK  
Sbjct: 189 KAKGSIDIMIPRGGKALIEFCTEHSLIPLVKHDDGICHVYIDKFADIEMAVSIAVNAKCQ 248

Query: 539 YPAACNAMETLLVHKDLEQNAVLNELIFALQSNGVTLYGGPRASKILNIPEA--RSFNHE 596
               CN METLLVH+ + +  VL  L  A   + V L G    +++++  +A    ++ E
Sbjct: 249 RVGVCNTMETLLVHEAVAET-VLKRLEKAYGEHNVELRGCEHTAELISCKKAAEEDWSTE 307

Query: 597 YCAKACTVEVVEDVYGAIDHIHRHGSAHTDCIVTEDHEVAELFLRQVDSAAVFHNASTRF 656
           Y     +V+VV  +  AI+HI+++GS H++ IVTE++  +E+FL  VD+AAV+ NASTR+
Sbjct: 308 YLDYILSVKVVSSIDEAIEHINKYGSMHSESIVTENYTNSEMFLNMVDAAAVYVNASTRW 367

Query: 657 SDGFRFGLGAEVGVSTGRIHARGPVGVEGLLTTRWIMRGKGQV 699
           +DG  FG+GAE+G+ST ++H RGP+G + L TT++ + G+GQ+
Sbjct: 368 TDGGEFGMGAEIGISTQKLHCRGPMGADDLTTTKYRIYGQGQI 410


Lambda     K      H
   0.318    0.135    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 573
Number of extensions: 21
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 717
Length of database: 411
Length adjustment: 35
Effective length of query: 682
Effective length of database: 376
Effective search space:   256432
Effective search space used:   256432
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory