GapMind for Amino acid biosynthesis

 

Alignments for a candidate for OAT in Kyrpidia tusciae DSM 2912

Align Ornithine aminotransferase; OAT; Ornithine--oxo-acid aminotransferase; EC 2.6.1.13 (characterized)
to candidate WP_013074657.1 BTUS_RS03025 aspartate aminotransferase family protein

Query= SwissProt::P38021
         (401 letters)



>NCBI__GCF_000092905.1:WP_013074657.1
          Length = 466

 Score =  247 bits (630), Expect = 6e-70
 Identities = 156/405 (38%), Positives = 219/405 (54%), Gaps = 22/405 (5%)

Query: 8   KEIIDQTSHYG-ANNYHPLPIVISEALG--AWVKDPEGNEYMDMLSAYSAVNQGHRHPKI 64
           K++ D   + G A  YH + +   E  G  + V D +G  Y+D +S Y ++  GH    +
Sbjct: 8   KDLYDSYINPGLAKLYHLMGLSAGELRGEGSVVYDEDGKRYIDCVSGYGSLPFGHCPRPV 67

Query: 65  IQALKDQADKITLTSRAFHNDQLGPFYEKTAKLTGKEMILPM--NTGAEAVESAVKAARR 122
           ++A++ Q D++ L+S+       G   E  A  T  ++      N+GAEAVE A+K AR 
Sbjct: 68  LEAVRRQMDRMALSSKVMPGRPAGELAEALAGWTPGDLQYSFFCNSGAEAVEGALKLAR- 126

Query: 123 WAYEVKGVADNQAEIIACVGNFHGRTMLAVSLSSEEEYKRGFGPMLPGIKLIPYGDVEAL 182
                      +   +A  G FHG+T  A+S+S  + Y+  F P+LPG+ L+P+GDVEAL
Sbjct: 127 -------AVTGRPGFVAAEGGFHGKTFGALSVSGRQRYRAPFHPLLPGVTLVPFGDVEAL 179

Query: 183 RQAITPNTAAFLFEPIQGEAGIVIPPEGFLQEAAAICKEENVLFIADEIQTGLGRTGKTF 242
           ++A++  TAA + EPIQGE G+   P G+L  A  IC     L I DE+QTG GRTG  F
Sbjct: 180 KRAVSQQTAAVILEPIQGEGGVHPAPRGYLTAAREICDRAGALLILDEVQTGFGRTGMPF 239

Query: 243 ACDWDGIVPDMYILGKALGGGVFPISCIAADREILGVF--NPGSHGSTFGGNPLACAVSI 300
           A   +G+VPD+  L KALGGGV PI C  A  E    F  +P  H STFGGNPLA A  +
Sbjct: 240 AAQREGVVPDVMCLAKALGGGVMPIGCFIARPEAARAFWEDPLIHTSTFGGNPLAAAAGL 299

Query: 301 ASLEVLEDEKLADRSLELGEYFKSELESIDSPV---IKEVRGRGLFIGVELTEAARP--Y 355
           A+L+ L+ E L   + E G + K E E +       I+EVRG GL +GVE  + AR    
Sbjct: 300 ATLDWLQREDLPRAAAETGRWLKGEFEEMAKRYPGWIREVRGEGLLLGVEFVDEARGGLV 359

Query: 356 CERLKEEGLLCKETHD--TVIRFAPPLIISKEDLDWAIEKIKHVL 398
              L E+G+L   T +   V+R  P L I +  L   +E    VL
Sbjct: 360 MSGLVEKGVLTAFTLNEYRVVRVEPSLTIDRGLLIQVLEAWDAVL 404


Lambda     K      H
   0.318    0.136    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 493
Number of extensions: 32
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 401
Length of database: 466
Length adjustment: 32
Effective length of query: 369
Effective length of database: 434
Effective search space:   160146
Effective search space used:   160146
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory