GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Sulfuricurvum kujiense DSM 16994

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_013450014.1 SULKU_RS13855 aspartate aminotransferase family protein

Query= BRENDA::P73133
         (429 letters)



>NCBI__GCF_000183725.1:WP_013450014.1
          Length = 388

 Score =  271 bits (692), Expect = 3e-77
 Identities = 155/393 (39%), Positives = 222/393 (56%), Gaps = 13/393 (3%)

Query: 34  YVMNTYGRFPIAIARGQGSTLWDTEGKSYLDFVAGIATCTLGHAHPALVRAVSDQIQKLH 93
           Y+++TY R  +   RG  +TL D+EGK Y+DF AG+A C++GH +  L RA+SDQ  K+ 
Sbjct: 5   YLLSTYKRQEVCFERGDNATLCDSEGKEYIDFAAGVAVCSVGHGNCRLARAISDQAAKIL 64

Query: 94  HVSNLYYIPEQGELAKWIVEHSCAD-RVFFCNSGAEANEAAIKLVRKYAHTVLDFLEQPV 152
           HVSNLY I  Q E A+ IVE S  D R FF NSG EANE AIK+ RKY       +++  
Sbjct: 65  HVSNLYRIEPQEECARRIVELSGYDMRCFFGNSGTEANEGAIKIARKYGERD-GSIKRYK 123

Query: 153 ILTAKASFHGRTLATITATGQPKYQQYFDPLVPGFDYVPYNDIRSLENKVADLDEGNSRV 212
           I+T + SFHGRT+  + ATGQ     YF P   GF Y    ++  +E+ +      +   
Sbjct: 124 IITLENSFHGRTITALKATGQASKHDYFGPYPDGFVYAA--NVEEIESLI------DETT 175

Query: 213 AAIFLEPLQGEGGVRPGDLAYFKRVREICDQNDILLVFDEVQVGVGRTGKLWGYEHLGVE 272
            A+ +E +QGEGGV+P D    + +  +    DILL+ DEVQ G+ R G      + G+ 
Sbjct: 176 VAVMIELVQGEGGVQPLDKQKVQNLSALLKSKDILLIVDEVQTGIYRCGSFLASHYYGIT 235

Query: 273 PDIFTSAKGLAGGVPIGAMMCKKFCDVFEPGNHASTFGGNPLACAAGLAVLKTIEGDRLL 332
           PD+ T AKGL GGVPIG +M  +  ++F  G+H STFGGN L+  A   VL  +E     
Sbjct: 236 PDVITLAKGLGGGVPIGVVM-TRLKEIFSYGDHGSTFGGNYLSTVAANEVLDILEAYNKS 294

Query: 333 DNVQARGEQLRSGLAEIKNQYPTLFTEVRGWGLINGLEISAESSLTSVEIVKAAMEQGLL 392
             +        + L      YP +FTE  G G++ GL +     L+  +I+ +A E G+L
Sbjct: 295 GEMMEHQNYFETSLKSFALHYPDIFTERVGIGMMQGLRVIDSEVLS--KIIDSAFEIGVL 352

Query: 393 LAPAGPKVLRFVPPLVVTEAEIAQAVEILRQAI 425
           +  +G   LRFVPPL ++++E+ +    L  A+
Sbjct: 353 VIKSGRNTLRFVPPLTISKSEMDEGFRRLNSAM 385


Lambda     K      H
   0.320    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 363
Number of extensions: 15
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 429
Length of database: 388
Length adjustment: 31
Effective length of query: 398
Effective length of database: 357
Effective search space:   142086
Effective search space used:   142086
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory